×

zbMATH — the first resource for mathematics

Hermitian Lie algebras and metaplectic representations. I. (English) Zbl 0386.22010

MSC:
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. L. Anderson, J. Fischer, and R. Rączka, Coupling problem for \?(\?,\?) ladder representations. I, Proc. Roy. Soc. Ser. A 302 (1968), 491 – 500. · Zbl 0159.29103
[2] V. Bargmann, Group representations on Hilbert spaces of analytic functions, Analytic methods in mathematical physics (Sympos., Indiana Univ., Bloomington, Ind., 1968) Gordon and Breach, New York, 1970, pp. 27 – 63.
[3] Carey and Hannabuss, Preprint.
[4] L. Corwin, Y. Ne’eman, and S. Sternberg, Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry), Rev. Modern Phys. 47 (1975), 573 – 603. · Zbl 0557.17004
[5] D. Ž. Djoković and G. Hochschild, Semisimplicity of 2-graded Lie algebras. II, Illinois J. Math. 20 (1976), no. 1, 134 – 143. · Zbl 0335.17016
[6] Stephen S. Gelbart, Harmonics on Stiefel manifolds and generalized Hankel transforms, Bull. Amer. Math. Soc. 78 (1972), no. 3, 451 – 455. · Zbl 0235.43012
[7] Stephen Gelbart, Holomorphic discrete series for the real symplectic group, Invent. Math. 19 (1973), 49 – 58. · Zbl 0236.22013
[8] Kenneth I. Gross and Ray A. Kunze, Bessel functions and representation theory. II. Holomorphic discrete series and metaplectic representations, J. Functional Analysis 25 (1977), no. 1, 1 – 49. · Zbl 0361.22007
[9] Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564 – 628. · Zbl 0072.01702
[10] C. Itzykson, Remarks on boson commutation rules, Comm. Math. Phys. 4 (1967), 92 – 122. · Zbl 0152.23204
[11] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 1 – 29. · Zbl 0346.17008
[12] V. Kac, Lie superalgebras (to appear). · Zbl 0366.17012
[13] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1 – 47. · Zbl 0375.22009
[14] David Kazhdan, Some applications of the Weil representation, J. Analyse Mat. 32 (1977), 235 – 248. · Zbl 0445.22018
[15] Shoshichi Kobayashi, On automorphism groups of homogeneous complex manifolds, Proc. Amer. Math. Soc. 12 (1961), 359 – 361. · Zbl 0101.14302
[16] Shoshichi Kobayashi, Irreducibility of certain unitary representations, J. Math. Soc. Japan 20 (1968), 638 – 642. · Zbl 0165.40504
[17] G. Mack and I. T. Todorov, Irreducibility of the ladder representations of \?(2,2) when restricted to the Poincaré subgroup, J. Mathematical Phys. 10 (1969), 2078 – 2085. · Zbl 0183.29003
[18] George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265 – 311. · Zbl 0082.11301
[19] Shingo Murakami, On automorphisms of Siegel domains, Lecture Notes in Mathematics, Vol. 286, Springer-Verlag, Berlin-New York, 1972. · Zbl 0245.32001
[20] Hideki Ozeki and Minoru Wakimoto, On polarizations of certain homogenous spaces, Hiroshima Math. J. 2 (1972), 445 – 482. Minoru Wakimoto, Polarizations of certain homogeneous spaces and most continuous principal series, Hiroshima Math. J. 2 (1972), 483 – 533. · Zbl 0267.22011
[21] I. I. Pyateskii-Shapiro, Automorphic functions and the geometry of classical domains, Translated from the Russian. Mathematics and Its Applications, Vol. 8, Gordon and Breach Science Publishers, New York-London-Paris, 1969.
[22] L. Pukánszky, On the unitary representations of exponential groups, J. Functional Analysis 2 (1968), 73 – 113.
[23] Lajos Pukánszky, On the theory of exponential groups, Trans. Amer. Math. Soc. 126 (1967), 487 – 507. · Zbl 0207.33605
[24] J. H. Rawnsley, On the cohomology groups of a polarization and diagonal quantization (preprint). · Zbl 0313.58016
[25] J. H. Rawnsley, Representations of a semi-direct product by quantization, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345 – 350. · Zbl 0313.22014
[26] M. Vergne and H. Rossi, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1976), no. 1-2, 1 – 59. · Zbl 0356.32020
[27] -, Continuation analytique de la série discrete holomorphic, Noncommutative Harmonic Analysis, Lecture Notes in Math., vol. 466, Springer-Verlag, Berlin and New York, 1975.
[28] Linda Preiss Rothschild and Joseph A. Wolf, Representations of semisimple groups associated to nilpotent orbits, Ann. Sci. École Norm. Sup. (4) 7 (1974), 155 – 173 (1975). · Zbl 0307.22012
[29] Wilfried Schmid, Some properties of square-integrable representations of semisimple Lie groups, Ann. of Math. (2) 102 (1975), no. 3, 535 – 564. · Zbl 0347.22011
[30] David Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149 – 167. · Zbl 0171.46901
[31] Masaru Takeuchi, Homogeneous Siegel domains, Study Group of Geometry, Institute of Mathematics, Yoshida College, Kyoto University, Kyoto, 1973. Publications of the Study Group of Geometry, Vol. 7. · Zbl 0313.32042
[32] Juan A. Tirao, Square integrable representations of semisimple Lie groups, Trans. Amer. Math. Soc. 190 (1974), 57 – 75. · Zbl 0288.22021
[33] I. T. Todorov, Discrete series of hermitian representations of the Lie algebra of \( U(p,q)\), Lecture Notes, ICTP, Trieste, 1975.
[34] Michèle Vergne, Étude de certaines représentations induites d’un groupe de Lie résoluable exponentiel, Ann. Sci. École Norm. Sup. (4) 3 (1970), 353 – 384 (French). · Zbl 0221.22014
[35] Nolan R. Wallach, The analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc. 251 (1979), 1 – 17, 19 – 37. · Zbl 0419.22017
[36] -, Analytic continuation of the discrete series. II, Trans. Amer. Math. Soc. (to appear).
[37] Nolan R. Wallach, On the unitarizability of representations with highest weights, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1974), Springer, Berlin, 1975, pp. 226 – 231. Lecture Notes in Math., Vol. 466.
[38] André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143 – 211 (French). · Zbl 0203.03305
[39] Joseph A. Wolf, Unitary representations of maximal parabolic subgroups of the classical groups, Mem. Amer. Math. Soc. 8 (1976), no. 180, iii+193. · Zbl 0344.22016
[40] Joseph A. Wolf, Representations of certain semidirect product groups, J. Functional Analysis 19 (1975), no. 4, 339 – 372. · Zbl 0311.22021
[41] -, Unitary representations of partially holomorphic cohomology spaces, Mem. Amer. Math. Soc. No. 138 (1974).
[42] Joseph A. Wolf, Remark on nilpotent orbits, Proc. Amer. Math. Soc. 51 (1975), 213 – 216. · Zbl 0316.22013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.