×

zbMATH — the first resource for mathematics

Ultraconvergence et singularités pour une classe de séries d’exponentielles. (French) Zbl 0386.30001

MSC:
30B50 Dirichlet series, exponential series and other series in one complex variable
30E05 Moment problems and interpolation problems in the complex plane
30D10 Representations of entire functions of one complex variable by series and integrals
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] M. BLAMBERT et M. BERLAND, Sur la convergence des éléments L-dirichlétiens, C.R.A.S., 280 (1975), 263-266. · Zbl 0315.30007
[2] M. BLAMBERT et R. PARVATHAM, Sur la localisation des points singuliers des fonctions définies par des éléments L-dirichlétiens, Bull. Sc. Math. (à paraître). · Zbl 0466.30006
[3] M. BLAMBERT et R. PARVATHAM, On the overconvergence of certain series I, International J. of Math. and Math. Physics, East Carolina University, U.S.A. (à paraître). · Zbl 0409.30003
[4] M. BLAMBERT et R. PARVATHAM, Quelques applications d’un théorème de leont’ev-lapin, C.R.A.S., 286 (1978), 373-376. · Zbl 0377.30005
[5] M. BLAMBERT et R. PARVATHAM, Convergence et ultraconvergence des séries d’exponentielles à coefficients polynomiaux, C.R.A.S., 286 (1978), 1227-1230. · Zbl 0392.30005
[6] M. BLAMBERT et J. SIMEON, Sur une technique d’étude des propriétés de convergence des séries de Dirichlet à exposants complexes, An. Fac. Sc. Univ. Porto, 56 (1973), 1-33. · Zbl 0315.30005
[7] T.M. GALLIE, Region of convergence of Dirichlet series with complex exponents, Proc. Amer. Math. Soc., 7 (1956), 627-629. · Zbl 0071.06503
[8] T.M. GALLIE, Mandelbrojt’s inequality and Dirichlet series with complex exponents, Trans. Amer. Math. Soc., 90 (1959), 57-72. · Zbl 0086.06003
[9] J.P. KAHANE, Sur quelques problèmes d’unicité et de prolongement, relatifs aux fonctions approchables par des sommes d’exponentielles, Ann. Inst. Fourier, Grenoble, vol. 5 (1953-1954), 39-130. · Zbl 0064.35903
[10] G.P. LAPIN, On the interpolation in the class of entire functions of finite order and finite type, Mat. Sb., N.S., 29, 11 (1951), 565-580. · Zbl 0045.35403
[11] A.F. LEONT’EV, On the interpolation in the class of entire functions of finite order and normal type, Doklady, Akad. Nauk., S.S.S.R., N.S., 66 (1949), 153-156.
[12] A.F. LEONT’EV, Series of Dirichlet polynomials and their generalizations, Trudy Mat. Inst. Steklov, 39, Izdat Akad. Nauk., S.S.S.R., Moscow (1951).
[13] B. LEPSON, On hyperdirichlet series and on related questions of the general theory of functions, Trans. Amer. Math. Soc., 72 (1952), 18-45. · Zbl 0046.07904
[14] G.L. LUNTZ, On certain generalized Dirichlet series, Mat. Sb., N.S., 52 (1942), 33-50. · Zbl 0063.03681
[15] G.L. LUNTZ, On Dirichlet series with complex exponents, Mat. Sb., N.S., 67 (1965), 89-134.
[16] G.L. LUNTZ, On series of Taylor-Dirichlet type, Izv. Akad. Nauk Armjan, S.S.R., Ser. Fiz Mat. Nauk, 14, 2, (1961), 7-16.
[17] G.L. LUNTZ, On the overconvergence of certain series, Izv. Ann. Armjan, S.S.R., Ser. Fiz Mat. Nauk, 15, 5 (1962), 11-26.
[18] S. MANDELBROJT, Séries adhérentes. Régularisation des suites. applications. Gauthiers-Villars, Paris 1952. · Zbl 0048.05203
[19] J.R. SHACKELL, Some theorems on the boundary behaviour of Dirichlet series with complex exponents, J. London Math. Soc., 42 (1962), 57-72. · Zbl 0155.11701
[20] J.R. SHACKELL, Singularities of Dirichlet series with complex exponents, Michigan Math. J., 14 (1967), 497-505. · Zbl 0179.38401
[21] J.R. SHACKELL, Overconvergence of Dirichlet series with complex exponents, J. Analyse Math., 14 (1967), 135-170. · Zbl 0177.10203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.