Vogan, David A. jun. A generalized \(\tau\)-invariant for the primitive spectrum of a semisimple Lie algebra. (English) Zbl 0387.17007 Math. Ann. 242, 209-224 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 43 Documents MSC: 17B35 Universal enveloping (super)algebras × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Berge, C.: Principles de combinatoire. Paris: Dunod 1968 · Zbl 0227.05001 [2] Borho, W., Jantzen, J.C.: Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-Algebra. Invent. Math.39, 1-53 (1977) · doi:10.1007/BF01695950 [3] Borho, W., Kraft, H.: Über die Gelfand-Kirillov-Dimension. Math. Ann.220, 1-24 (1976) · doi:10.1007/BF01354525 [4] Duflo, M.: Représentations irréducibles des groupes semi-simple complexes. In: Analyse harmonique sur les groupes de Lie. Lectures Notes in Mathematics 497, pp. 26-88. Berlin, Heidelberg, New York: Springer 1975 [5] Duflo, M.: Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple. Ann. of Math.105, 107-120 (1977) · Zbl 0346.17011 · doi:10.2307/1971027 [6] Humphreys, J.: Introduction to Lie algebras and representation theory. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0254.17004 [7] Joseph, A.: On the annihilators of the simple subquotients of the principal series. Ann. Sci. École Norm. Sup.10, 419-439 (1977) · Zbl 0386.17004 [8] Joseph, A.: A characteristic variety for the primitive spectrum of a semisimple Lie algebra. Preprint. Short version in: Non-commutative harmonic analysis. Lecture Notes in Mathematics 587, pp. 102-118. Berlin, Heidelberg, New York: Springer 1977 [9] Joseph, A.: Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules. J. Lond. Math. Soc. (in press) · Zbl 0401.17007 [10] Joseph, A.: Towards the Jantzen conjecture. II. Preprint · Zbl 0424.17005 [11] Langlands, R.: On the classification of irreducible representations of real algebraic groups. Mimeographed notes. Princeton: NJ: Institute for Advanced Study 1973 [12] Speh, B., Vogan, D.: Reducibility of generalized principal series representations. Preprint · Zbl 0457.22011 [13] Vogan, D.: Gelfand-Kirillov dimension for Harish-Chandra modules. Invent. Math.48, 75-98 (1978) · Zbl 0389.17002 · doi:10.1007/BF01390063 [14] Vogan, D.: Irreducible characters of semisimple Lie groups. I. Duke Math. J.46, 61-108 (1979) · Zbl 0398.22021 · doi:10.1215/S0012-7094-79-04605-2 [15] Jantzen, J.C.: Moduln mit einem höchsten Gewicht. Habilitationsschrift, Universität Bonn 1977 · Zbl 0426.17001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.