×

zbMATH — the first resource for mathematics

Singularity of parabolic measures. (English) Zbl 0387.31001

MSC:
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
31C99 Generalizations of potential theory
35K05 Heat equation
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] B.E.J. Dahlberg : On estimates of harmonic measures . Arch. Rational Mech. Anal. 65, No. 3 (1977) 275-288. · Zbl 0406.28009 · doi:10.1007/BF00280445
[2] E.G. Effros and J.L. Kazdan : On the Dirchlet problem for the heat equation . Indiana Univ. Math. J. 20 (1971) 683-693. · Zbl 0216.12702 · doi:10.1512/iumj.1971.20.20054
[3] A. Friedman : Partial differential equations of parabolic type . Prentice-Hall, 1964. · Zbl 0144.34903
[4] J.T. Kemper : Temperatures in several variables: kernel functions, representations and parabolic boundary values . Trans. Amer. Math. Soc., 167 (1972) 243-262. · Zbl 0238.35039 · doi:10.2307/1996137
[5] I.G. Petrowski : Zur Ersten Randwertaufgaben der Warmeleitungsgleichung . Compositio Math. 1 (1935) 383-419. · JFM 60.1140.01|0010.29903 · www.numdam.org
[6] J.-M. Wu : On parabolic measures and subparabolic functions . Trans. Amer. Math. Soc. 251 (1979) 171-186. · Zbl 0426.35044 · doi:10.2307/1998688
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.