zbMATH — the first resource for mathematics

Lattice invariant valuations on rational polytopes. (English) Zbl 0387.52007

52Bxx Polytopes and polyhedra
52C07 Lattices and convex bodies in \(n\) dimensions (aspects of discrete geometry)
Full Text: DOI
[1] E.Ehrhart, Polynomes arithmetiques et methode des poly?dres en combinatoire. Basel-Stuttgart 1976.
[2] H. Hadwiger, Translationsinvariante, additive und schwachstetige Polyederfunktionale. Arch. Math.3, 387-394 (1952). · Zbl 0048.28801 · doi:10.1007/BF01899378
[3] P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes. Math. Proc. Cambridge Phil. Soc.78, 247-261 (1975). · Zbl 0313.52005 · doi:10.1017/S0305004100051665
[4] P. McMullen, Valuations and Euler-type relations on certain classes of convex polytopes Proc. London Math. Soc. (3)35, 113-135 (1977). · Zbl 0353.52001 · doi:10.1112/plms/s3-35.1.113
[5] G.-C. Rota, On the foundations of combinatorial theory, I: Theory of M?bius functions. Z. Wahrscheinlichkeitstheorie2, 340-368 (1964). · Zbl 0121.02406 · doi:10.1007/BF00531932
[6] D. M. Y. Sommerville, The relations connecting the anglesums and volume of a polytope in space of re dimensions. Proc. Roy. Soc. London Ser. A115, 103-119 (1927). · JFM 53.0578.03 · doi:10.1098/rspa.1927.0078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.