×

zbMATH — the first resource for mathematics

A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. (English) Zbl 0387.76063

MSC:
76L05 Shock waves and blast waves in fluid mechanics
35L65 Hyperbolic conservation laws
65N06 Finite difference methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boris, J.P.; Book, D.L., J. computational phys., 11, 38, (1973)
[2] Boris, J.P.; Book, D.L.; Hain, K.J., J. computational phys., 18, 248, (1975)
[3] Chorin, A.J., J. computational phys., 22, 517, (1976)
[4] Chorin, A.J., J. computational phys., 25, 253, (1977)
[5] Godunov, S.K., Mat. sbornik, 47, 271, (1959)
[6] Godunov, S.K.; Zabrodin, A.V.; Prokopov, G.P., J. comp. math. math. phys. USSR, 1, 1187, (1962)
[7] Glimm, J., Comm. pure appl. math., 18, 697, (1965)
[8] Harten, A., The method of artificial compression, ()
[9] Harten, A., Comm. pure appl. math., 30, 611, (1977)
[10] \scA. Harten, The artificial compression method for shocks and contact discontinuities. III. Self-adjusting hybrid schemes, to appear. · Zbl 0409.76057
[11] \scA. Harten and G. Sod A generalized version of Glimm’s method, to appear.
[12] Harten, A.; Zwas, G., J. computational phys., 6, 568, (1972)
[13] \scJ. M. Hyman, On robust and accurate methods for the calculation of compressible fluid flows, I, to appear.
[14] Lapidus, A., J. computational phys., 2, 154, (1967)
[15] Lax, P.D., Comm. pure appl. math., 7, 159, (1954)
[16] Lax, P.D., Comm. pure appl. math., 10, 537, (1957)
[17] Van Leer, B., J. computational phys., 3, 473, (1969)
[18] Maccormack, R., ()
[19] Richtmyer, R., A survey of difference methods for non-steady fluid dynamics, ()
[20] Richtmyer, R.; Morton, K., Difference methods for initial-value problems, (1967), Interscience New York · Zbl 0155.47502
[21] Rusanov, V.V., J. comp. math. math. phys. USSR, no. 2, (1962)
[22] Son, G.A., The computer implementation of Glimm’s method, ()
[23] Sod, G.A., J. fluid mech., 83, 785, (1977)
[24] G. A. Son, A numerical model of unsteady combustion phenomena, to appear.
[25] G. A. Soo, “Numerical Analysis with Application to Fluid Dynamics,” Courant Institute Lecture Notes, to appear.
[26] Von Neumann, J.; Richtmyer, R.D., J. appl. phys., 21, 232, (1950)
[27] Buckley, S.E.; Leverett, M.C., Trans. AIME, 146, 107, (1942)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.