×

A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. (English) Zbl 0387.76063


MSC:

76L05 Shock waves and blast waves in fluid mechanics
35L65 Hyperbolic conservation laws
65N06 Finite difference methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Boris, J. P.; Book, D. L., J. Computational Phys., 11, 38 (1973) · Zbl 0251.76004
[2] Boris, J. P.; Book, D. L.; Hain, K. J., J. Computational Phys., 18, 248 (1975) · Zbl 0306.76004
[3] Chorin, A. J., J. Computational Phys., 22, 517 (1976) · Zbl 0354.65047
[4] Chorin, A. J., J. Computational Phys., 25, 253 (1977) · Zbl 0403.65049
[5] Godunov, S. K., Mat. Sbornik, 47, 271 (1959)
[6] Godunov, S. K.; Zabrodin, A. V.; Prokopov, G. P., J. Comp. Math. Math. Phys. USSR, 1, 1187 (1962)
[7] Glimm, J., Comm. Pure Appl. Math., 18, 697 (1965) · Zbl 0141.28902
[8] Harten, A., The Method of Artificial Compression, (AEC Research and Development Report C00-3077-50 (1974), New York University)
[9] Harten, A., Comm. Pure Appl. Math., 30, 611 (1977) · Zbl 0343.76023
[10] A. Harten; A. Harten · Zbl 0409.76057
[11] A. Harten and G. Sod; A. Harten and G. Sod
[12] Harten, A.; Zwas, G., J. Computational Phys., 6, 568 (1972) · Zbl 0244.76033
[13] J. M. Hyman; J. M. Hyman
[14] Lapidus, A., J. Computational Phys., 2, 154 (1967) · Zbl 0152.44804
[15] Lax, P. D., Comm. Pure Appl. Math., 7, 159 (1954) · Zbl 0055.19404
[16] Lax, P. D., Comm. Pure Appl. Math., 10, 537 (1957) · Zbl 0081.08803
[17] Van Leer, B., J. Computational Phys., 3, 473 (1969) · Zbl 0167.25101
[18] Maccormack, R., (Holt, M., Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 8 (1971), Springer-Verlag: Springer-Verlag New York)
[19] Richtmyer, R., A Survey of Difference Methods for Non-Steady Fluid Dynamics, (NCAR Technical Note 63-2 (1962), National Center for Atmospheric Research: National Center for Atmospheric Research Boulder, Colo)
[20] Richtmyer, R.; Morton, K., Difference Methods for Initial-Value Problems (1967), Interscience: Interscience New York · Zbl 0155.47502
[21] Rusanov, V. V., J. Comp. Math. Math. Phys. USSR, No. 2 (1962)
[22] Son, G. A., The Computer Implementation of Glimm’s Method, (UCID-17252 (1976), Lawrence Livermore Laboratory, University of California)
[23] Sod, G. A., J. Fluid Mech., 83, 785 (1977) · Zbl 0366.76055
[24] G. A. Son, A numerical model of unsteady combustion phenomena, to appear.; G. A. Son, A numerical model of unsteady combustion phenomena, to appear.
[25] G. A. Soo, “Numerical Analysis with Application to Fluid Dynamics,” Courant Institute Lecture Notes, to appear.; G. A. Soo, “Numerical Analysis with Application to Fluid Dynamics,” Courant Institute Lecture Notes, to appear.
[26] Von Neumann, J.; Richtmyer, R. D., J. Appl. Phys., 21, 232 (1950) · Zbl 0037.12002
[27] Buckley, S. E.; Leverett, M. C., Trans. AIME, 146, 107 (1942)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.