The numerically stable reconstruction of a Jacobi matrix from spectral data. (English) Zbl 0388.15010


15A18 Eigenvalues, singular values, and eigenvectors
15B57 Hermitian, skew-Hermitian, and related matrices
Full Text: DOI


[2] Forsythe, George E., Generation and use of orthogonal polynomials for data-fitting with a digital computer, J. SIAM, 5, 74-88 (1957) · Zbl 0083.35503
[3] Gantmacher, F. R.; Krein, M. G., Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme (1960), Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0088.25103
[4] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comp., 23, 221-230 (1969) · Zbl 0179.21901
[5] Gray, L. J.; Wilson, D. G., Construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 14, 131-134 (1976) · Zbl 0358.15021
[6] Hald, Ole H., Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl., 14, 63-85 (1976) · Zbl 0328.15007
[7] Hochstadt, Harry, On some inverse problems in matrix theory, Arch. Math., 18, 201-207 (1967) · Zbl 0147.27701
[8] Hochstadt, Harry, On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 8, 435-446 (1974) · Zbl 0288.15029
[9] Wendroff, Burton, On orthogonal polynomials, Proc. Amer. Math. Soc., 12, 554-555 (1961) · Zbl 0099.05601
[10] Wilkinson, J. H.; Reinsch, C., Linear Algebra, Handbook for Automatic Computation II (1971), Springer: Springer Berlin · Zbl 0219.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.