×

zbMATH — the first resource for mathematics

Produkte endlicher einfacher Gruppen. (German) Zbl 0388.20020

MSC:
20D40 Products of subgroups of abstract finite groups
20D05 Finite simple groups and their classification
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Collins, M.J.: The characterization of finite groups whose Sylow 2-subgroups are of typeL 3 (q), q even. J. Algebra25, 490-512 (1973) · Zbl 0262.20016 · doi:10.1016/0021-8693(73)90096-3
[2] Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific J. Math.13, 755-1029 (1963) · Zbl 0124.26402
[3] Gilman, R., Gorenstein, D.: Finite groups with Sylow 2-subgroups of class two II. Trans. Amer. Math. Soc.207, 103-126 (1975) · Zbl 0312.20009
[4] Goldschmidt, D.: 2-Fusion in finite groups. Ann. of Math.99, 70-117 (1974) · Zbl 0276.20011 · doi:10.2307/1971014
[5] Gorenstein, D.: Finite groups. New York: Harper and Row 1968 · Zbl 0185.05701
[6] Hering, C.: Zweifach transitive Permutationsgruppen, in denen 2 die maximale Anzahl von Fixpunkten von Involutionen ist. Math. Z.104, 150-174 (1968) · Zbl 0172.02804 · doi:10.1007/BF01109878
[7] Huppert, B.: Endliche Gruppen I. Berlin-Heidelberg-New York: Springer 1967 · Zbl 0217.07201
[8] Kegel, O., Lüneburg, H.: Über die kleine Reidemeisterbedingung II. Arch. Math. Basel14, 7-10 (1963) · Zbl 0108.16302
[9] Preiser, U.: Produkte von endlichen einfachen Gruppen. J. Algebra (erscheint demnächst) · Zbl 0401.20021
[10] Walter, J.: The characterization of finite groups with abelian Sylow 2-subgroups. Ann. of Math.89, 405-514 (1969) · Zbl 0184.04605 · doi:10.2307/1970648
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.