×

zbMATH — the first resource for mathematics

An abstract semilinear Volterra integrodifferential equation. (English) Zbl 0388.45012

MSC:
45N05 Abstract integral equations, integral equations in abstract spaces
45J05 Integro-ordinary differential equations
45D05 Volterra integral equations
47D03 Groups and semigroups of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Viorel Barbu, Nonlinear Volterra equations in a Hilbert space, SIAM J. Math. Anal. 6 (1975), 728 – 741. · Zbl 0322.45012
[2] -, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976.
[3] Bernard D. Coleman and Morton E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys. 18 (1967), 199 – 208 (English, with German summary).
[4] Bernard D. Coleman and Victor J. Mizel, Norms and semi-groups in the theory of fading memory, Arch. Rational Mech. Anal. 23 (1966), 87 – 123. · Zbl 0146.46104
[5] M. G. Crandall, S.-O. Londen and J. A. Nohel, An abstract nonlinear Volterra integrodifferential equation, MRC Technical Summary Report #1684, University of Wisconsin, Madison, 1976. · Zbl 0395.45023
[6] Constantine M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations 7 (1970), 554 – 569. · Zbl 0212.45302
[7] Avner Friedman, Monotonicity of solutions of Volterra integral equations in Banach space, Trans. Amer. Math. Soc. 138 (1969), 129 – 148. · Zbl 0182.15201
[8] Avner Friedman and Marvin Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc. 126 (1967), 131 – 179. · Zbl 0147.12302
[9] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0148.12601
[10] Stig-Olof Londen, An existence result on a Volterra equation in a Banach space, Trans. Amer. Math. Soc. 235 (1978), 285 – 304. · Zbl 0376.45011
[11] Stig-Olof Londen, On an integral equation in a Hilbert space, SIAM J. Math. Anal. 8 (1977), no. 6, 950 – 970. · Zbl 0379.45011
[12] R. C. MacCamy, Stability theorems for a class of functional differential equations, SIAM J. Appl. Math. 30 (1976), no. 3, 557 – 576. · Zbl 0346.34059
[13] -, An integro-differential equation with applications in heat flow (to appear).
[14] R. C. MacCamy and J. S. W. Wong, Stability theorems for some functional equations, Trans. Amer. Math. Soc. 164 (1972), 1 – 37. · Zbl 0274.45012
[15] Richard K. Miller, Volterra integral equations in a Banach space, Funkcial. Ekvac. 18 (1975), no. 2, 163 – 193. · Zbl 0326.45007
[16] Marshall Slemrod, A hereditary partial differential equation with applications in the theory of simple fluids, Arch. Rational Mech. Anal. 62 (1976), no. 4, 303 – 321. · Zbl 0362.76019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.