Satyanarayana, M. Structure and ideal theory of commutative semigroups. (English) Zbl 0389.20050 Czech. Math. J. 28(103), 171-180 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 7 Documents MSC: 20M10 General structure theory for semigroups 20M12 Ideal theory for semigroups PDF BibTeX XML Cite \textit{M. Satyanarayana}, Czech. Math. J. 28(103), 171--180 (1978; Zbl 0389.20050) Full Text: EuDML References: [1] Clifford A. H,, and Preston G. B.: The Algebraic Theory of Semigroups. Vol. 1, Amer. Math. Soc. (1961). · Zbl 0111.03403 [2] Dorofeeva M. P., Mannepalli V. L., and Satyanarayano M.: Prüfer and Dedekind monoids. Semigroup Forum, 9 (1975), 294-309. · Zbl 0297.20069 [3] Grillet P. A.: Intersections of maximal ideals in semigroups. Amer. Math. Monthly, 76 (1969), 503-509. · Zbl 0191.01603 [4] Mannepalli V. L., and Satyanarayana M.: Monoids of Dedekind type. Semigroup Forum, 9 (1974), 19-27. · Zbl 0293.20048 [5] Petrich M.: On the structure of a class of commutative semigroups. Czech. Math. Jour., 14 (89) (1964), 147-153. · Zbl 0143.03403 [6] Satyanarayana M.: A class of commutative semigroups in which the idempotents are linearly ordered. Czech. Math. Jour., 21 (96) (1971), 633-637. · Zbl 0228.20045 [7] Satyanarayana M.: Commutative primary semigroups. Czech. Math. Jour., 22 (97) (1972), 509-516. · Zbl 0248.20072 [8] Satyanarayana M.: On left cancellative semigroups. Semigroup Forum, 6 (1973), 317-329. · Zbl 0267.20058 [9] Satyanarayana M.: On commutative semigroups which are unions of a finite number of principal ideals. to appear in Czech. Math. Jour. · Zbl 0361.20062 [10] Schwarz Štefan: Prime ideals and maximal ideals in semigroups. Czech. Math. Jour., 19 (94) (1969), 72-79. · Zbl 0176.29503 [11] Tamura T.: The study of closets and free contents related to semilattice decompositions of semigroups. Semigroups, edited by K. W. Folley, Academic Press (1969), 221 - 260. · Zbl 0188.05302 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.