×

zbMATH — the first resource for mathematics

On uniformly homeomorphic normed spaces. II. (English) Zbl 0389.46009

MSC:
46B03 Isomorphic theory (including renorming) of Banach spaces
54E15 Uniform structures and generalizations
57N17 Topology of topological vector spaces
46B20 Geometry and structure of normed linear spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aharoni, I., Every separable metric space is Lipschitz equivalent to a subset ofc o,Israel J. Math. 19 (1974), 284–291. · Zbl 0303.46012 · doi:10.1007/BF02757727
[2] Aharoni, I., Uniform embeddings of Banach spaces, To appear. · Zbl 0353.46009
[3] Bessaga, C., On topological classification of linear metric spaces,Fund. Math.,56 (1965), 251–288. · Zbl 0138.37404
[4] Day, M. M.,Normed Linear Spaces, Third Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973, ISBN 3-540-06 148. · Zbl 0268.46013
[5] Enflo, P., On the nonexistence of uniform homeomorphisms betweenL p -spaces,Ark. Mat. 8 (1969), 103–105. · Zbl 0196.14002 · doi:10.1007/BF02589549
[6] Enflo, P., Uniform structure and square roots in topological groups, II,Israel J. Math. 8 (1970), 253–272. · Zbl 0214.28501 · doi:10.1007/BF02771561
[7] Lindenstrauss, J., On non-linear projections in Banach spaces,Michigan Math. J.,11 (1964), 263–287. · Zbl 0195.42803 · doi:10.1307/mmj/1028999141
[8] Lindenstrauss, J., Some aspects of the theory of Banach spaces,Advances in Math. 5 (1970), 159–180. · Zbl 0203.12002 · doi:10.1016/0001-8708(70)90032-0
[9] Lindenstrauss, J. andPelczynski, A., Absolutely summing operators inL p -spaces and their applications,Studia Math. 29 (1968), 275–326. · Zbl 0183.40501
[10] Lindenstrauss, J. andRosenthal, H. P., TheL p -spaces,Israel J. Math. 7 (1969), 325–349. · Zbl 0205.12602 · doi:10.1007/BF02788865
[11] Lindenstrauss, J. andTzafriri, L.,Classical Banach Spaces, Lecture Notes in Math.338, Springer-Verlag, Berlin-Heidelberg-New York, 1973, ISBN 3-540-06 408.
[12] Lindenstrauss, J. andTzafriri, L., The uniform approximation property in Orlicz spaces,Israel J. Math. 23 (1976), 142–155. · Zbl 0347.46025 · doi:10.1007/BF02756794
[13] Mankiewicz, P., On Lipschitz mappings between Fréchet spaces,Studia Math. 41 (1972), 225–241. · Zbl 0237.46004
[14] Mankiewicz, P., On the differentiability of Lipschitz mappings in Fréchet spaces,Studia Math. 45 (1973), 15–29. · Zbl 0219.46006
[15] Mankiewicz, P., On Fréchet spaces uniformly homeomorphic toH\(\times\)s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 521–527. · Zbl 0294.46012
[16] Mankiewicz, P., On spaces uniformly homeomorphic to Hilbertian Fréchet spaces,Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 529–531. · Zbl 0294.46013
[17] Pelczynski, A. andRosenthal, H. P., Localization techniques inL p -spaces,Studia Math. 52 (1975), 263–289.
[18] Ribe, M., On uniformly homeomorphic normed spaces,Ark. Mat. 14 (1976), 237–244. · Zbl 0336.46018 · doi:10.1007/BF02385837
[19] Aharoni, I. andLindenstrauss, J., Uniform equivalence between Banach spaces,To appear.
[20] Enflo, P.,Uniform homeomorphisms between Banach spaces, Seminaire Maurey–Schwartz 1975–1976, Exposé 18.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.