Gibbons, G. W.; Pope, C. N. \(\mathbb{C} P^2\) as a gravitational instanton. (English) Zbl 0389.53013 Commun. Math. Phys. 61, 239-248 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 52 Documents MSC: 53B50 Applications of local differential geometry to the sciences 53B35 Local differential geometry of Hermitian and Kählerian structures 83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems) × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Gibbons, G.W., Hawking, S.W.: In preparation [2] Hawking, S.W., Pope, C.N.: Phys. Lett.73B, 42 (1978) [3] Eguchi, T., Freund, P.G.O.: Phys. Rev. Letters37, 1251 (1977) · doi:10.1103/PhysRevLett.37.1251 [4] ’t Hooft, G.: Phys. Rev. D14, 3432 (1976) [5] Berger, M., Gauduchin, P., Mazet, E.: Le spectre d’une variete Riemannienne. In: Lecture notes in mathematics, Vol. 194. Berlin-Heidelberg-New York: Springer 1971 [6] Flaherty, E.J.: Hermitian and Kahlerian geometry in relativity. In: Lecture notes in physics, Vol. 46. Berlin-Heidelberg-New York: Springer 1976 · Zbl 0323.53048 [7] Plebanski, J., Demianski, M.: Ann. Phys. (N.Y.)98, 98 (1976) · Zbl 0334.53037 · doi:10.1016/0003-4916(76)90240-2 [8] Hawking, S.W.: Phys. Lett. A60, 81 (1977) [9] Gibbons, G.W., Hawking, S.W.: Phys. Rev. D15, 2738 (1977) [10] Kottler, F.: Ann. Phys. (Leipzig)56, 401 (1918) · JFM 46.1306.01 · doi:10.1002/andp.19183611402 [11] Gibbons, G.W.: Functional integrals in curved spacetime. Preprint (1977) · Zbl 0441.53048 [12] Charap, J., Duff, M.J.: Phys. Lett.69B, 445 (1977); Charap, J., Duff, M.J.: Spacetime topology and a new class of Yang-Mills instantons. Q.M.C. Preprint (July 1977) [13] Eisenhart, L.P.: Continuous groups of transformations. Princeton, NJ: Princeton University Press 1933 · JFM 59.0430.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.