×

zbMATH — the first resource for mathematics

A pseudo-interior of \(\lambda I\). (English) Zbl 0389.54016

MSC:
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] R.D. Anderson : On topological infinite deficiency . Mich. Math. J., 14 (1967) 365-383. · Zbl 0148.37202
[2] R.D. Anderson : On sigma-compact subsets of infinite dimensional spaces . Trans. Amer. Math. Soc. (to appear).
[3] D.W. Curtis and R.M. Schori 2X and C(X) are homeomorphic to the Hilbert cube . Bull. Amer. Math. Soc., 80 (1974) 927-931. · Zbl 0302.54011
[4] J. De Groot , Superextensions and supercompactness . Proc. I. Intern. Symp. on extension theory of topological structures and its applications (VEB Deutscher Verlag Wiss., Berlin 1967), 89-90. · Zbl 0191.21202
[5] J. De Groot , G.A. Jensen and A. Verbeek , Superextensions, Report Mathematical Centre ZW 1968-017 , Amsterdam, 1968. · Zbl 0197.48701
[6] N. Kroonenberg , Pseudo-interiors of hyperspaces (to appear). · Zbl 0336.54008
[7] J. Van Mill , The superextension of the closed unit interval is homeomorphic to the Hilbert cube, rapport 48 , Department of Mathematics, Free University, Amsterdam (1976) (to appear in Fund. Math.).
[8] R. Schori and J.E. West , 2I is homeomorphic to the Hilbert cube , Bull. Amer. Math. Soc., 78 (1972) 402-406. · Zbl 0242.54006
[9] A. Verbeek , Superextensions of topological spaces , Mathematical Centre tracts, 41, Mathematisch Centrum, Amsterdam (1972). · Zbl 0256.54014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.