×

zbMATH — the first resource for mathematics

Fonctions harmoniques sur les groupes localement compacts à base dénombrable. (French) Zbl 0389.60003

MSC:
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] AZENCOTT R. , Espaces de Poisson des groupes localement compacts . Lecture notes, Springer-Verlag n^\circ 148, ( 1970 ). MR 58 #18748 | Zbl 0208.15302 · Zbl 0208.15302
[2] AZENCOTT R. et CARTIER P. , Martin boundaries of random walks on locally compact groups . 6th Berkeley Symposium Proc. Math. Statist. Probab. 3, Univ. Calif. Press. ( 1972 ), p. 87-123. MR 53 #11775 | Zbl 0273.60060 · Zbl 0273.60060
[3] BIRGE L. et RAUGI A. , Comptes Rendus 278 , série A, ( 1974 ), 1287. Zbl 0279.43006 · Zbl 0279.43006
[4] BROWN I.D. et GUIVARC’H Y. , Espace de Poisson des groupes de Lie . Extrait de Ann. Scient. de l’E.N.S., 4è série. t. 7, fasc. 2, ( 1974 ). Numdam | MR 55 #570a | Zbl 0308.22022 · Zbl 0308.22022
[5] CHEVALLEY C. , Théorie des groupes de Lie . Publ. de l’Inst. de Math. de l’Université de Nancago, I et IV. · JFM 55.0681.02
[6] DOOB J.L. , Stochastic Processes . John Wiley, New York, ( 1953 ). MR 15,445b | Zbl 0053.26802 · Zbl 0053.26802
[7] ELIE L. et RAUGI A. , Comptes Rendus , 280, série A, ( 1975 ), p. 377. MR 52 #9321 | Zbl 0299.60057 · Zbl 0299.60057
[8] FURSTENBERG H. , A Poisson formula for semi-simple Lie groups . Ann. of Math., 77, ( 1963 ), 335-386. MR 26 #3820 | Zbl 0192.12704 · Zbl 0192.12704
[9] FURSTENBERG H. , Amer. Math. Soc. Summer Inst. on Harmonic Analysis on Homogeneous spaces , Williamstown, Massachussets, ( 1972 ).
[10] FURSTENBERG H. , Non commuting random products . Trans. Amer. Math. Soc. Vol. 108, ( 1963 ), 377-428. MR 29 #648 | Zbl 0203.19102 · Zbl 0203.19102
[11] GUIVARC’H Y. , Croissance polynomiale et périodes des fonctions harmoniques . Bull. Soc. Math. France, 101, ( 1973 ), 333-379. Numdam | MR 51 #5841 | Zbl 0294.43003 · Zbl 0294.43003
[12] GUIVARC’H Y. , Lois des grands nombres sur les groupes . A paraître.
[13] HELGASON S. , Differential geometry and symetric spaces . New York, Acad. Press, ( 1962 ). Zbl 0111.18101 · Zbl 0111.18101
[14] HOCHSCHILD G. , The structure of Lie groups . Holden Day Inc, San Francisco, USA ( 1965 ). MR 34 #7696 | Zbl 0131.02702 · Zbl 0131.02702
[15] IWASAWA K. , Ann. of Math. , 50, n^\circ 3, ( 1949 ). MR 10,679a | Zbl 0034.01803 · Zbl 0034.01803
[16] JACOD J. , Théorèmes de renouvellement et classification pour les chaînes semi-markoviennes . Ann. Inst. H. Poincaré, Vol. 7, n^\circ 2, ( 1971 ), 83-129. Numdam | MR 46 #4626 | Zbl 0217.50502 · Zbl 0217.50502
[17] KELLEY J. , General Topology . New York, D-Van Nostrand Company, Inc. ( 1955 ). MR 16,1136c | Zbl 0066.16604 · Zbl 0066.16604
[18] KESTEN , The limit points of a normalised random walk . Ann. Math. Statist. 41, ( 1970 ), 1173-1205. Article | MR 42 #1222 | Zbl 0233.60062 · Zbl 0233.60062
[19] MACKEY G. , Induced representations of locally compact groups . Ann. of Math. 55 ( 1952 ), 101-139. MR 13,434a | Zbl 0046.11601 · Zbl 0046.11601
[20] MONTGOMERY D. and ZIPPIN L. , Topological Transformation groups . New York, Interscience publisher, ( 1955 ). MR 17,383b | Zbl 0068.01904 · Zbl 0068.01904
[21] RAUGI A. , Comptes Rendus , 280, série A, ( 1975 ), 1309.
[22] RAUGI A. , Comptes Rendus , 282, série A, ( 1976 ), 653. MR 53 #3595 | Zbl 0358.60013 · Zbl 0358.60013
[23] REVUZ D. , Markov chains . North-Holland Mathematical Library, Vol. 11, ( 1975 ). MR 54 #3852 | Zbl 0332.60045 · Zbl 0332.60045
[24] ROSENBERG J. , Remarks on random walks on semi-simple Lie groups . A paraître. Numdam | Zbl 0383.22005 · Zbl 0383.22005
[25] Séminaire Sophus Lie , ( 1954 - 1955 ), Paris, exposé 9 (F. Bruhat). Numdam · Zbl 0406.01015
[26] VIRTSER A.D. , Central limit theorem for semi-simple Lie groups . Theory of probability and its applications, ( 1970 , Vol. XV, 667-687. Zbl 0232.60004 · Zbl 0232.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.