×

zbMATH — the first resource for mathematics

Un modèle fonctionnel des structures de contrôle. (French) Zbl 0389.68015

MSC:
68W30 Symbolic computation and algebraic computation
68Q65 Abstract data types; algebraic specification
03B40 Combinatory logic and lambda calculus
Software:
ALGOL 60
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] 1. J. ARSAC, L. NOLIN, G. RUGGIU et J. P. VASSEUR, Le système de Programmation Structurée EXEL Revue Technique Thomson CSF,Vol. 6, N^\circ 3, 1974, p. 715-736.
[2] 2. J. ARSAC, Emploi de méthodes constructives en programmation, Un dossier de programmation : la fonction d’Ackermann. R.A.I.R.O., Informatique Théorique, Vol. 11, N^\circ 2, 1977, p. 91-112. Zbl0358.68018 · Zbl 0358.68018 · eudml:92049
[3] 3. J. ARSAC, La construction de programmes structurés, Dunod, Paris, 1977. Zbl0451.68014 · Zbl 0451.68014
[4] 4. D. BERRY, Implementation of a Contour Model Lambda-Calculus Machine, TR n^\circ 71-44. Brown University 1971.
[5] 5. C. BÖHM and W. GROSS, Introduction to the CUCH, Automata Theory, E. R. Caianello, Ed. Academic Press, 1966, p. 35-65. Zbl0192.06903 · Zbl 0192.06903
[6] 6. C. BÖHM, The CUCH as a Formal and Description Language, Formal languages, Description languages for Computer Programming, T. B. Steel, Ed. North-Holland Pub., 1966, p. 179-197.
[7] 7. C. BÖHM and G. JACOPINI, Flow Diagrams, Turing Machines and Languages with Only Two Formation Rules, Comm. ACM, Vol. 9, N^\circ 5, 1966, p. 365-371. Zbl0145.24204 · Zbl 0145.24204 · doi:10.1145/355592.365646
[8] 8. C. BOHM et M. DEZANI, A CUCH-Machine : the Automatic Treatment of Bound Variables, Int. journal of Comp. and Inf. Sciences, Vol. 1, N^\circ 2, 1972, p. 171-186. Zbl0277.68026 · Zbl 0277.68026 · doi:10.1007/BF00995737
[9] 9. R. CASTANET, Sémantique formelle des opérateurs d’un language de liste, RAIRO, R-3, 1974, p. 19-36. Zbl0325.68012 MR366631 · Zbl 0325.68012 · eudml:92008
[10] 10. G. COUSINEAU, Transformations de programmes itératifs, in Programmation B. Robinet, Ed., Dunod, 1977, p. 53-74.
[11] 11. G. COUSINEAU, Les arbres à feuilles indicées : un cadre algébrique pour l’étude des structures de contrôle, Thèse de Doctorat. Université Paris 7, 1977.
[12] 12. H. B. CURRY, R. FEYS and W. CRAIG, Combinatory Logic, Vol. 1. North-Holland, 1958. Zbl0081.24104 MR94298 · Zbl 0081.24104
[13] 13. M. J. FISCHER, Lambda-Calculus Schemata, Proc. ACM Conference on Proving Assertions About Programs. Las Cruces, 1972, p. 104-109.
[14] 14. J. R. HINDLEY, B. LERCHER and J. P. SELDIN, Introduction to Combinatory Logic, London Mathematical Society. Lecture Notes Series 7. Cambridge University Press. 1972. Zbl0269.02005 MR335242 · Zbl 0269.02005
[15] 15. P. J. LANDIN, A Lambda-Calculus Approach, Advances in Programming and Non-Numerical Computation. Pergamon Press, 1966, p. 97-141. Zbl0203.16406 · Zbl 0203.16406
[16] 16. P. J. LANDIN, A Correspondance Between Algol 60 and Church’s Lambda-Notation, Comm. ACM, Vol. 8, N^\circ 2, 3, 1965, p. 89-101 et 158-165. Zbl0134.33403 · Zbl 0134.33403 · doi:10.1145/363744.363749
[17] 17. P. LUCAS, On the Semantics of Programming Languages and Software Devices, Formal Semantics of Programming Languages. R. Rustin, Ed., Prentice-Hall Inc., 1972, p. 41-57. MR428751
[18] 18. J. MCCARTHY, Recursive Functions of Symbolic Expressions and their Computation by Machine, Part I. Comm. ACM, Vol. 3, N^\circ 4, 1960, p. 184-195. Zbl0101.10413 · Zbl 0101.10413 · doi:10.1145/367177.367199
[19] 19. J. MICHEL, Évaluation automatique de formules de la Logique Combinatoire, Application aux techniques de preuve. Thèse de Spécialité. Université Pierre-et-Marie-Curie, 1976.
[20] 20. J. H. MORRIS, Lambda-Calculus Models of Programming Languages, Ph. D., MIT, 1968.
[21] 21. L. NOLIN and G. RUGGIU, Formalization of EXEL Conference Record of ACM Symposium on Principles of Programming Languages, Boston, 1973, p. 108-119. Zbl0308.68011 · Zbl 0308.68011
[22] 22. W. W. PETERSON, T. KASAMI and N. TOKURA, On the Capabilities of While, Repeat and Exit Statements, Comm. ACM, Vol. 16, N^\circ 8, 1973, p. 503-512. Zbl0279.68008 MR368466 · Zbl 0279.68008 · doi:10.1145/355609.362337
[23] 23. J. C. REYNOLDS, GEDANKEN. A Simple Typeless Language Based on the Principle of Completeness and the Reference Concept, Comm. ACM, Vol. 13, N^\circ 5, p. 308-319, 1970. Zbl0193.15101 · Zbl 0193.15101 · doi:10.1145/362349.362364
[24] 24. J. C. REYNOLDS, Definitional Interpreters for Higher-Order. Programming Languages. Proc. 25th ACM, National Conference, 1972, p. 717-740.
[25] 25. B. ROBINET, Un modèle sémantique pour un langage simple de programmation, 1. Fachtagung uber Automatentheorie und Formale Sprachen. Lecture Notes in Computer Science, N^\circ 2, Springer-Verlag, 1973, p. 301-310. Zbl0277.68012 MR443410 · Zbl 0277.68012
[26] 26. B. ROBINET, Contributions à l’étude de réalités informatiques, Thèse de Doctorat. Université Pierre-et-Marie-Curie. Paris, 1974.
[27] 27. B. ROBINET et F. NOZIK, Sémantique des structures de contrôle. R.A.I.R.O., Informatique théorique, Vol. 11, N^\circ 1, 1977, p. 63-74. Zbl0354.68027 MR483652 · Zbl 0354.68027 · eudml:92043
[28] 28. G. RUGGIU, Les types et les appels de procédure, in Automata, Languages and Programming. M. Nivat, Ed., North-Holland, 1973, p. 319-330. Zbl0279.02014 MR403293 · Zbl 0279.02014
[29] 29. G. RUGGIU, De l’organigramme à la formule, Thèse de Doctorat. Université Pierre et Marie Curie, Paris, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.