×

zbMATH — the first resource for mathematics

Duality and intersection theory in complex manifolds. I. (English) Zbl 0391.32008

MSC:
32C37 Duality theorems for analytic spaces
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
14C40 Riemann-Roch theorems
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Altman, A.B., Kleiman, S.: Introduction to Grothendieck duality theory. Lecture Notes in Mathematics 146. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0215.37201
[2] de Rham, G.: Variétés différentiables. Paris: Hermann 1960
[3] Gabrielov, A.M., Gelfand, I.M., Losik, M.V.: Combinatorial computation of characteristics classes. Funct. Anal. Appl.9, 12-28 (1975)
[4] Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébrique cohérents. Séminaire Bourbaki,t. 9, 1956-1957, No. 149
[5] Grothendieck, A.: Local cohomology. Lecture Notes in Mathematics 41. Berlin, Heidelberg, New York: Springer 1967 · Zbl 0185.49202
[6] Grothendieck, A.: La théorie des classes de Chern. Bull. Soc. Math. France86, 137-154 (1958) · Zbl 0091.33201
[7] Hartshorne, R.: Residues and duality. Lecture Notes in Mathematics 20. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0212.26101
[8] King, J.: Residues and Chern classes. Proc. of Symp. in Pure Math.27, 91-97 (1975) · Zbl 0319.32014
[9] Malgrange, B.: Systèmes différentiels à coefficients constants. Séminaire Bourbaki, t. 15, 1962-1963, no. 246
[10] Ramis, J.P., Ruget, G.: Complexe dualisant et théorèmes de dualité en géométrie analytique complexe. Publ. I.H.E.S.38, 77-91 (1970) · Zbl 0206.25006
[11] Serre, J.P.: Un théorème de dualité. Comm. Math. Helv.29, 9-26 (1955) · Zbl 0067.16101
[12] Toledo, D., Tong, Y.L.L.: A parametrix for \(\bar \partial\) and Riemann Roch in ?ech theory. Topology,15, 273-301 (1976) · Zbl 0355.58014
[13] Toledo, D., Tong, Y.L.L.: The holomorphic Lefschetz formula. Bull. A.M.S.81, 1133-1135 (1975) · Zbl 0331.14004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.