Corwin, L.; Greenleaf, F. P. Singular Fourier integral operators and representations of nilpotent Lie groups. (English) Zbl 0391.46033 Commun. Pure Appl. Math. 31, 681-705 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 9 Documents MSC: 46F10 Operations with distributions and generalized functions 22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.) Keywords:Real Analytic Function; Singular Fourier Integral Operators; Distributions; Representations of Nilpotent Lie Groups; Locally L1-Space Function; Lebesgue Measure; Rate of Growth of Singular Hyperplane; Singular Support; Trace Characters PDF BibTeX XML Cite \textit{L. Corwin} and \textit{F. P. Greenleaf}, Commun. Pure Appl. Math. 31, 681--705 (1978; Zbl 0391.46033) Full Text: DOI OpenURL References: [1] Andersson, Ark. Matemat. 8 pp 73– (1971) [2] Carleson, Studia Math. 44 pp 287– (1972) [3] Dixmier, Can. J. Math. 11 pp 321– (1959) · Zbl 0125.06802 [4] Dixmier, Bull. Soc. Math. France 87 pp 65– (1959) [5] Fourier Integral Operators, CIMS/NYU Lecture Notes, New York, 1973, 190 pp. [6] Hörmander, Comm. Pure Appl. Math. 23 pp 329– (1970) [7] Hörmander, Ark. Mathemat. 11 pp 1– (1973) [8] Kirillov, Uspekhi Mat. Nauk. 17 pp 57– (1962) [9] Russian Math. Surveys 17 pp 53– (1962) [10] Lecons sur les Représentations des Groupes, Dunod, Paris, 1967. [11] Treves, Bull. Soc. Math. France 95 pp 155– (1967) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.