×

Transformation groupoids and bundles of Banach spaces. (English) Zbl 0391.46060


MSC:

46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
20L05 Groupoids (i.e. small categories in which all morphisms are isomorphisms)
54H20 Topological dynamics (MSC2010)
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] 1 Atiyah , M.F. , K-theory , Benjamin , 1967 . MR 224083
[2] 2 Bredon , G.E. , Introduction to compact trans formation groups , Vol. 46 , Pure and Applied Math. , Academic Press , 1972 . MR 413144 | Zbl 0246.57017 · Zbl 0246.57017
[3] 3 Brown , R. , Groupoids as coefficients , Proc. London Math. Soc. 26 ( 1972 ), 413 . MR 311744 | Zbl 0245.20045 · Zbl 0245.20045
[4] 4 Douady , A. and Dal Soglio - Herault , Existence de s ections pour un fibré de Banach au sens de Fell , Preprint.
[5] 5 Engleking , R. , Outline of general topology , North-Holland , 1968 . Zbl 0157.53001 · Zbl 0157.53001
[6] 6 Hofmann , K.H. , Bundles of Banach spaces, sheaves of Banach spaces and C (B )-modules , Technische Hochschule , Darmstadt , 1974 .
[7] 7 Hofmann , K.H. , Sheaves and bundles of Banach spaces , Preprint. · Zbl 0346.46053
[8] 8 M , J.F. , Metric families , Pacific J. Math , 57 ( 1975 ), 491 - 509 . Article | MR 391091 | Zbl 0308.54007 · Zbl 0308.54007
[9] 9 Seda , A.K. , Haar measures for groupoids , Proc. Roy. Irish A cad. 76 A ( 1976 ), 25 - 36 . MR 427598 | Zbl 0329.43002 · Zbl 0329.43002
[10] 10 Seda , A.K. , On compact transformation groupoids , Cahiers Topo. et Géo. Diff. 16 - 4 ( 1975 ), 409 - 414 . Numdam | MR 418062 | Zbl 0326.43003 · Zbl 0326.43003
[11] 11 Seda , A.K. , An extension theorem for transformation groupoids , Proc. Roy. Ir. A cad. 75 A ( 1975 ), 255 - 262 . MR 415644 | Zbl 0357.20037 · Zbl 0357.20037
[12] 12 Seda , A.K. , Topological groupoids, measures and representations, Ph. D. Thesis , University of Wales , 1974 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.