×

The commutant of an analytic Toeplitz operator. (English) Zbl 0391.47014


MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47B20 Subnormal operators, hyponormal operators, etc.
30D50 Blaschke products, etc. (MSC2000)
30D55 \(H^p\)-classes (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. B. Abrahamse, Analytic Toeplitz operators with automorphic symbol, Proc. Amer. Math. Soc. 52 (1975), 297 – 302. · Zbl 0317.47020
[2] M. B. Abrahamse and Joseph A. Ball, Analytic Toeplitz operators with automorphic symbol. II, Proc. Amer. Math. Soc. 59 (1976), no. 2, 323 – 328. · Zbl 0351.47023
[3] I. N. Baker, James A. Deddens, and J. L. Ullman, A theorem on entire functions with applications to Toeplitz operators, Duke Math. J. 41 (1974), 739 – 745. · Zbl 0296.30020
[4] James A. Deddens and Tin Kin Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261 – 273. · Zbl 0273.47017
[5] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. · Zbl 0734.46033
[6] Eric A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442 – 449. · Zbl 0161.34703 · doi:10.4153/CJM-1968-040-4
[7] Carl Pearcy and Allen L. Shields, A survey of the Lomonosov technique in the theory of invariant subspaces, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 219 – 229. Math. Surveys, No. 13. · Zbl 0302.47004
[8] Walter Rudin, A generalization of a theorem of Frostman, Math. Scand 21 (1967), 136 – 143 (1968). · Zbl 0185.33301 · doi:10.7146/math.scand.a-10853
[9] John V. Ryff, Subordinate \?^{\?} functions, Duke Math. J. 33 (1966), 347 – 354. · Zbl 0148.30205
[10] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513 – 532. · Zbl 0112.29701 · doi:10.2307/2372892
[11] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/1971), 777 – 788. · Zbl 0195.13601 · doi:10.1512/iumj.1971.20.20062
[12] James E. Thomson, Intersections of commutants of analytic Toeplitz operators, Proc. Amer. Math. Soc. 52 (1975), 305 – 310. · Zbl 0317.47021
[13] James E. Thomson, The commutants of certain analytic Toeplitz operators, Proc. Amer. Math. Soc. 54 (1976), 165 – 169. · Zbl 0328.47014
[14] James E. Thomson, The commutant of a class of analytic Toeplitz operators, Amer. J. Math. 99 (1977), no. 3, 522 – 529. · Zbl 0372.47018 · doi:10.2307/2373929
[15] James Thomson, The commutant of a class of analytic Toeplitz operators. II, Indiana Univ. Math. J. 25 (1976), no. 8, 793 – 800. · Zbl 0334.47023 · doi:10.1512/iumj.1976.25.25063
[16] William A. Veech, A second course in complex analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1967. · Zbl 0145.29901
[17] E. L. Stout, Bounded holomorphic functions on finite Reimann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255 – 285. · Zbl 0154.32903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.