zbMATH — the first resource for mathematics

Diskrete Approximation von Eigenwertproblemen. I: Qualitative Konvergenz. (German) Zbl 0391.65020

65J15 Numerical solutions to equations with nonlinear operators
65J10 Numerical solutions to equations with linear operators
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
47A55 Perturbation theory of linear operators
Full Text: DOI EuDML
[1] Anselone, P. M.: Collectively compact operator approximation theory. Englewood Cliffs: Prentice Hall 1971 · Zbl 0228.47001
[2] Baxley, J. V.: Eigenvalues of singular differential operators by finite difference methods, I. J. Math. Anal. Appl.38, 244?254 (1972) · Zbl 0237.47023
[3] Birkhoff, G., de Boor, C., Schwartz, B., Wendroff, B.: Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J. Num.-Anal.13, 188?203 (1966) · Zbl 0143.38002
[4] Brakhage, H.: Zur Fehlerabschätzung für die numerische Eigenwertbestimmung bei Integralgleichungen. Num. Math.3, 174?179 (1961) · Zbl 0109.09602
[5] Bramble, J. H., Hubbard, B. E.: Effects of boundary regularity on the discretization error in the fixed membrane eigenvalue problem. SIAM J. Num. Anal5, 835?863 (1968) · Zbl 0182.50104
[6] Bramble, J. H., Osborn, J. E.: Rate of convergence estimates for nonselfadjoint eigenvalue approximations. Math. Comp.27, 525?549 (1973) · Zbl 0305.65064
[7] Bramble, J. H.: Approximation of Steklov eigenvalues of nonselfadjoint second order elliptic operators, in A. K. Aziz (ed.): The mathematical foundation of the finite element method (p. 387?408). Academic Press 1972
[8] Chatelin-Laborde, F.: Méthodes d’approximations des valeurs propres d’opérateurs linéaires dans un espace de Banach. I: Critère de stabilité; II: Bornes d’erreur. C. R. Acad. Sci. Paris271, 949?952, 1006?1009 (1970) · Zbl 0204.48006
[9] Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. III: Eigenvalue problems. Num. Math.12, 120?133 (1968) · Zbl 0181.18303
[10] Fischer, H.: Zur Fehlerabschätzung für das Differenzenverfahren bei eindimensionalen Eigenwertaufgaben. Dissertation Tübingen 1967
[11] Fix, G. J.: Eigenvalue approximation by the finite element method. Advances Math.10, 300?316 (1973) · Zbl 0257.65086
[12] Gary, J.: Computing eigenvalues of ordinary differential equations by finite differences. Math. Comp.19, 365?379 (1965) · Zbl 0131.14302
[13] Greenlee, W. M.: Perturbation of eigenvalues with an engineering application. J. Math. Anal. Appl.27, 1?20 (1969) · Zbl 0189.44003
[14] Greenlee, W. M.: Perturbation of eigenvalues with an eingineering application. A supplement. J. Math. Anal. Appl.28, 674?680 (1969) · Zbl 0189.44101
[15] Grigorieff, R. D.: Approximation von Eigenwertproblemen und Gleichungen zweiter Art in Hilbertschen Räumen. Math. Ann.183, 45?77 (1969) · Zbl 0177.41201
[16] Grigorieff, R. D.: Die Konvergenz des Rand und- Eigenwertproblems linearer gewöhnlicher Differenzengleichungen. Num. Math.15, 15?48 (1970) · Zbl 0194.47303
[17] Grigorieff, R. D.: Diskrete Approximation von Eigenwertproblemen. I: Qualitative Konvergenz. Num. Math.24, 355?374 (1975) · Zbl 0391.65020
[18] Hubbard, B. E.: Bounds for eigenvalues of the free and fixed membrane by finite difference methods. Pac. J. Math.11, 559?590 (1961) · Zbl 0100.12503
[19] Hubbard, B. E.: Eigenvalues of the nonhomogeneous rectangular membrane by finite difference methods. Arch. Rat. Mech. Anal.9, 121?133 (1962) · Zbl 0108.37802
[20] Hubbard, B. E.: Bounds for eigenvalues of the Sturm-Liouville problem by finite difference methods. Arch. Rat. Mech. Anal.10, 171?179 (1962) · Zbl 0196.49802
[21] Keller, H. B.: On the accuracy of finite difference approximations to the eigenvalues of differential and integral operators. Num. Math.7, 412?419 (1965) · Zbl 0135.37702
[22] Kato, T.: Perturbation theory for linear operators. Berlin: Springer 1966 · Zbl 0148.12601
[23] Krasnosel’skii, M. A., Vainikko, G. M.: Approximate solution of operator equations, Groningen: Wolters-Noordhoff 1969
[24] Kuttler, J. R.: Finite difference approximations for eigenvalues of uniformly elliptic operators. SIAM J. Num. Anal.7, 206?232 (1970) · Zbl 0208.42601
[25] Linz, P.: On the numerical computation of eigenvalues and eigenvectors of symmetric integral equations. Math. Comp.24, 905?910 (1970) · Zbl 0225.65107
[26] Linz, P.: Error estimates for the computation of eigenvalues of self-adjoint operators. BIT12, 528?533 (1972) · Zbl 0274.65020
[27] Ljusternik, L. A.: On difference approximations of the Laplace operator. Amer. Math. Soc. Transl.8, 289?351 (1958)
[28] Pierce, J. G., Varga, R. S.: Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems. I. Estimates relating Rayleigh-Ritz and Galerkin approximations to eigenfunctions. SIAM J. Num. Anal.9, 137?151 (1972) II: Improved error bounds for eigenfunctions. Num. Math.19, 155?169 (1972) · Zbl 0301.65063
[29] Planchard, J.: Sur l’approximation des valeurs propres et vecteurs propres des opérateurs hermitiens compacts. Bull. EDF Ser. C1, 5?30 (1968)
[30] Prikastschikow, W. G.: Die Differenzenaufgabe zur Bestimmung der Eigenwerte einer partiellen elliptischen Differentialgleichung vierter Ordnung. Wiss. Z. techn. Hochschule Otto v. Guericke Magdeburg17, 105?109 (1973) · Zbl 0257.35030
[31] Saul’ev, V. K.: On the solution of the problem of eigenvalues by the method of finite differences. Amer. Math. Soc. Transl.8, 257?287 (1958)
[32] Saul’ev, V. K.: On estimation of the error in finding eigenfunctions by the method of finite differences. Am. Math. Soc. Transl. (2)35, 137?165 (1964)
[33] Schmidt, J. W., Schönheinz, H.: Fenlerschranken für die genäherte Lösung von Rand- und Eigenwertaufgaben bei gewöhnlichen Differentialgleichungen durch Differenzenverfahren. ISNM9, 125?140 (1968) · Zbl 0184.38402
[34] Schönheinz, H.: Eigenwerteinschließung bei gewöhnlichen Differentialgleichungen über ein Differenzenverfahren. ZAMM49, 141?150 (1969) · Zbl 0185.41502
[35] Strang, G., Fix, G. J.: An analysis of the finite element method. Englewood Cliffs: Prentice Hall, 1973 · Zbl 0356.65096
[36] Stummel, F.: Diskrete Konvergenz linearer Operatoren. I. Math. Ann.190, 45?92 (1970) · Zbl 0203.45301
[37] Stummel, F.: Diskrete Konvergenz linearer Operatoren. II: Math. Z.120, 231?264 (1971) · Zbl 0209.15502
[38] Vainikko, G. M.: On the speed of convergence of approximate methods in the eigenvalue problem. USSR Comp. Math. Math. Phys.7, 18?32 (1967) · Zbl 0249.65041
[39] Vainikko, G. M.: On the rate of convergence of certain approximation methods of Galerkin type in an eigenvalue problem. Amer. Math. Soc. Transl.86, 249?259 (1970) · Zbl 0249.65041
[40] Veidinger, L.: Evaluation of the error in finding eigenvalues by the method of finite differences. USSR Comp. Math. Math. Phys.5, 28?42 (1965) · Zbl 0157.23203
[41] Volkov, E. A.: A method for improving the accuracy of grid solutions of the Poisson equation. Am. Math. Soc. Transl. (2)35, 117?136 (1964) · Zbl 0135.38202
[42] Weinberger, H. F.: Upper and lower bounds for eigenvalues by finite difference methods. Comm. Pure Appl. Math.9, 613?623 (1956) · Zbl 0070.35203
[43] Weinberger, H. F.: Lower bounds for higher eigenvalues by finite difference methods. Pac. J. Math.8, 339?368 (1958) · Zbl 0084.34802
[44] Wendroff, B.: Bounds for eigenvalues of some differential operators by the Rayleigh-Ritz method. Math. Comp.19, 218?224 (1965) · Zbl 0139.10703
[45] Wielandt, H.: Error bounds for eigenvalues of symmetric integral equations. Proc. Symp. Appl. Math.6, 261?282 (1956) · Zbl 0071.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.