×

On the multi-grid method applied to difference equations. (English) Zbl 0391.65045


MSC:

65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bachvalov, N. S.: On the convergence of a relaxation method with natural constraints on the elliptic operator. Ž. vyčisl. Mat. mat. Fiz.6, 861–883 (1966). · Zbl 0154.41002
[2] Brandt, A.: Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems. Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, 1972 (Cabannes, H., Temam, R., eds.). (Lecture Notes in Physics, Vol. 18.), pp. 82–89. Berlin-Heidelberg-New York: Springer 1973.
[3] Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput.31, 333–390 (1977). · Zbl 0373.65054
[4] Collatz, L.: The numerical treatment of differential equations, 3rd ed. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0173.17702
[5] Fedorenko, R. P.: A relaxation method for solving elliptic difference equations. Ž. vyčisl. Mat. mat. Fiz.1, 922–927 (1961).
[6] Fedorenko, R. P.: The speed of convergence of one iterative process. Ž. vyčisl. Mat. mat. Fiz.4, 559–564 (1964).
[7] Hackbusch, W.: A fast iterative method for solving Poisson’s equation in a general region. Numerical Treatment of Differential Equations, 1976 (Bulirsch, R., Grigorieff, R. D., Schröder, J., eds.). (Lecture Notes in Mathematics, Vol. 631.) Berlin-Heidelberg-New York: Springer 1970.
[8] Hackbusch, W.: Ein iteratives Verfahren zur schnellen Auflösung elliptischer Randwertprobleme. Report 76-12, Mathematisches Institut (Angewandte Mathematik), Universität zu Köln, 1976.
[9] Hackbusch, W.: On the convergence of a multi-grid iteration applied to finite element equations (to be published in Numerische Mathematik). · Zbl 0422.65020
[10] Hackbusch, W.: A fast numerical method for elliptic boundary value problems with variable coefficients. 2nd GAMM-Conference on Numerical Methods in Fluid Mechanics, DFVLR, Köln, 1977. · Zbl 0369.65026
[11] Meis, Th., Marcowitz, U.: Numerische Lösung partieller Diffenetialgleichungen. Berlin-Heidelberg-New York: Springer 1978. · Zbl 0418.65044
[12] Nicolaides, R. A.: On multiple grid and related techniques for solving discrete elliptic systems. J. Comp. Phys.19, 418–431 (1975). · Zbl 0363.65081
[13] Nicolaides, R. A.: On the observed rate of convergence of an iterative method applied to a model elliptic difference equation. Math. Comp.32, 127–133 (1978). · Zbl 0394.65038
[14] Nicolaides, R. A.: On thel 2 convergence of an algorithm for solving finite element equations. Math. Comp.31, 892–906 (1977). · Zbl 0384.65052
[15] Pereyra, V., Proskurowski, W., Widlund, O.: High order fast Laplace solvers for the Dirichlet problem on general regions. Math. Comp.31, 1–16 (1977). · Zbl 0348.65090
[16] Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz’s equation by the capacitance matrix method. Math. Comp.30, 433–468 (1976). · Zbl 0332.65057
[17] Schröder, J., Trottenberg, U.: Reduktionsverfahren für Differentialgleichungen bei Randwertaufgaben I. Numerische Mathematik22, 37–68 (1973). · Zbl 0272.65096
[18] Shortley, G. H., Weller, R.: Numerical solution of Laplace’s equation. J. Appl. Phys.9, 334–348 (1938). · Zbl 0019.03801
[19] South, J. C., Brandt, A.: Application of a multi-grid method to transonic flow calculations. ICASE Report 76-8, Nasa’s Langley Research Center, 1976.
[20] Wachspress, E. L.: A rational finite element basis. New York: Academic Press 1975. · Zbl 0322.65001
[21] Frederickson, P. O.: Fast approximate inversion of large sparse linear systems. Report. 7-75, Lakehead University, 1975.
[22] Hackbusch, W.: On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method (to be published in SIAM J. Numer. Anal.). · Zbl 0403.65043
[23] Hackbusch, W.: Die schnelle Auflösung der Fredholmschen Integralgleichung zweiter Art (to be published in Beiträge zur Numerischen Mathematik9). · Zbl 0458.65108
[24] Hackbusch, W.: On the fast solving of nonlinear elliptic equations (to be submitted to Numerische Mathematik). · Zbl 0386.65047
[25] Wesseling, P.: Numerical solution of the stationary Navier-Stokes equations by means of a multiple grid method and Newton iteration. Report NA-18, Delft University, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.