On the solution of large, structured linear complementarity problems: the block partitioned case. (English) Zbl 0391.90087


90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C90 Applications of mathematical programming
65K05 Numerical mathematical programming methods
Full Text: DOI


[1] R. J. Arms, L. D. Gates, and B. Zondek, A method of block iteration,J. SIAM, 4, 220-229 (1956). · Zbl 0077.32502
[2] J. C. Bierlein, The journal bearing,Scientific American, 233, 50-64 (1975).
[3] J. Céa, Recherche numérique d’un optimum dans un espace produit, colloquium on methods of optimization,Lecture Notes in Mathematics, 112, Springer-Verlag, New York, 1970.
[4] J. Céa and R. Glowinski, Sur des methodes d’optimisation par relaxation,RAIRO R-3, 5-32 (1973).
[5] R. Chandrasekaran, A special case of the complementary pivot problem,Opsearch, 7, 263-268 (1970).
[6] D. G. Christopherson, A new mathematical method for the solution of film lubrication problems,Inst. Mech. Engrs. J. Proc., 146, 126-135 (1941). · Zbl 0063.00888
[7] R. W. Cottle and G. B. Dantzig, Complementary pivot theory of mathematical programming,Linear Algebra and Appl., 1, 103-125 (1968). · Zbl 0155.28403
[8] R. W. Cottle and R. S. Sacher, On the solution of large, structured, linear complementarity problems: The tridiagonal case,J. Appl. Math. and Optimization, 3, 321-340 (1977). · Zbl 0375.90048
[9] R. W. Cottle, G. H. Golub, and R. S. Sacher,On the solution of large, structured linear complementarity problems: Technical Report 74-7, Department of Operations Research, Stanford University, Stanford, California, 1974. · Zbl 0391.90087
[10] C. W. Cryer, The solution of a quadratic programming problem using systematic overrelaxation,J. SIAM Control, 9, 385-392 (1971). · Zbl 0216.54603
[11] M. A. Diamond, The solution of a large quadratic programming problem using fast methods to solve systems of linear equations,Int. J. Systems Sci., 5, 131-136 (1974). · Zbl 0297.90065
[12] V. M. Fridman and V. S. Chernina, An iteration process for the solution of the finite-dimensional contact problem,U.S.S.R. Comp. Math. and Math. Phys., 8, 210-214 (1967). · Zbl 0191.15901
[13] C. L. Gerling,Die ausgleichs-rechnungen der practischen geometrie oder die methode der kleinsten quadrate mit ihren anwendungen für geodätiche aufgaben, Gothe, Hamburg, 1843.
[14] C. Hildreth, A quadratic programming procedure,Nav. Res. Logist. Quart, 4, 79-85 (1957).
[15] E. Isaacson and H. B. Keller,Analysis of Numerical Methods, J. Wiley and Sons, New York, 1966. · Zbl 0168.13101
[16] C. E. Lemke, On complementary pivot theory,Mathematics of the Decision Sciences, Part I (G. B. Dantzig and A. F. Veinott, Jr., eds.), American Mathematical Society, Providence, R.I., 1968. · Zbl 0208.45502
[17] O. Pinkus and B. Sternlicht,Theory of Hydrodynamic Lubrication, McGraw-Hill, New York, 1961. · Zbl 0100.23001
[18] H. L. Royden,Real Analysis, 2nd edition, Macmillan Co., London, 1968. · Zbl 0197.03501
[19] S. Schechter, ?Relaxation methods for convex problems,?SIAM J. Numer. Anal., 5, 601-612 (1968). · Zbl 0179.22701
[20] S. Schechter, Iteration methods for nonlinear problems,Trans. Amer. Math. Soc., 104, 179-189 (1962). · Zbl 0106.31801
[21] R. S. Varga,Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, N. J., 1962. · Zbl 0133.08602
[22] D. M. Young,Iterative Solution of Large Linear Systems, Academic Press, New York, 1971. · Zbl 0231.65034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.