×

Basic aspects of unirational homotopy theory. (English) Zbl 0392.14004


MSC:

14F35 Homotopy theory and fundamental groups in algebraic geometry
14H30 Coverings of curves, fundamental group
14E20 Coverings in algebraic geometry
55Q52 Homotopy groups of special spaces
14M20 Rational and unirational varieties
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] CHERENACK P., Can. J. Math. pp 155– (1972)
[2] CHERENACK P., Comment. Math. Univ. Carolinae 15 pp 3– (1974)
[3] CHERENACK P., Mathematics Colloquium Univ. of Cape Town pp 163– (1974)
[4] GIESECKE B., Math. Zeitschr. 83 pp 177– (1964) · Zbl 0123.39602
[5] GROTHENDIECK A., Elémenta de géométris algébriqus I. (1970)
[6] GROTHENDIECK A., Elémenta de géométrie algébriqus II. (1961)
[7] LEFSCHETZ S., Topology. (1930)
[8] MAY J., Simplicial objects in algebraic topology. (1967) · Zbl 0165.26004
[9] MOORE J. C., Symposium International de Topologia Algebraica. pp 232– (1958)
[10] MUMFORD D., Introduction to algebraic geometry. · Zbl 0114.13106
[11] NASH J., Ann. of Math. 56 pp 405– (1952) · Zbl 0048.38501
[12] POPP H., Fundamentalgruppen algebraischer Mannigfaltigkeiten. (1970)
[13] SAMUEL P., Commutative Algebra I. (1958)
[14] SEIDENBERG A., Elements of the theory of Algebraic Curves. (1968) · Zbl 0159.33303
[15] UENO K., Sonderforschungsbereich 40, in: Classification of algebraic varieties I. (1973)
[16] UENO K., Classification thoery of algebraic varieties and compact complex spaces. (1975)
[17] WALKER R., Algebraic curves.,, 2. ed. (1962) · Zbl 0103.38202
[18] WALLACE A., Can. J. Math. pp 242– (1958)
[19] WHITNEY H, Ann. of Math. 66 pp 545– (1957) · Zbl 0078.13403
[20] WINTERS G. B., ”Classification theory of algebraic varieties and compact complex spaces by Kenji Ueno” 83 pp 344– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.