×

A calculus for Fourier integral operators in domains with boundary and applications to the oblique derivative problem. (English) Zbl 0392.35055


MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
35J25 Boundary value problems for second-order elliptic equations
47Gxx Integral, integro-differential, and pseudodifferential operators

Citations:

Zbl 0364.35049
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF02392024 · Zbl 0206.39401 · doi:10.1007/BF02392024
[2] Boutet de Monve1 L., Astŕefisque 34 pp 123– (1976)
[3] Hörmander L., Linear partial differential operators (1963) · Zbl 0108.09301 · doi:10.1007/978-3-642-46175-0
[4] DOI: 10.2307/1970473 · Zbl 0132.07402 · doi:10.2307/1970473
[5] DOI: 10.1007/BF02392052 · Zbl 0212.46601 · doi:10.1007/BF02392052
[6] DOI: 10.1007/BF02411162 · Zbl 0213.37605 · doi:10.1007/BF02411162
[7] DOI: 10.2307/1970668 · Zbl 0177.26002 · doi:10.2307/1970668
[8] Melin, A and Sjöstrand, J. 1975.Fourier integral operators with complex-valued phase functions, Vol. 459, 120–233. Springer Lecture Notes. · Zbl 0306.42007
[9] DOI: 10.1080/03605307608820014 · Zbl 0364.35049 · doi:10.1080/03605307608820014
[10] Weinstein A., Amer. Math. Soc.,Providence (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.