Hinton, Don B.; Lewis, Roger T. Spectral analysis of second order difference equations. (English) Zbl 0392.39001 J. Math. Anal. Appl. 63, 421-438 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 73 Documents MSC: 39A12 Discrete version of topics in analysis 47A10 Spectrum, resolvent 39A70 Difference operators 47B39 Linear difference operators Keywords:Oscillation Condition; Limit Point; Spectral Analysis; Oscillatory Solutions; Limit Circle Citations:Zbl 0143.365; Zbl 0094.061 PDF BibTeX XML Cite \textit{D. B. Hinton} and \textit{R. T. Lewis}, J. Math. Anal. Appl. 63, 421--438 (1978; Zbl 0392.39001) Full Text: DOI References: [1] Atkinson, F. V., Discrete and Continuous Boundary Value Problems (1964), Academic Press: Academic Press New York · Zbl 0117.05806 [2] Berezanskii, J. M., Expansions in Eigenfunctions of Selfadjoint Operators, AMS Translations of Mathematical Monographs, Providence, R.I., Vol. 17 (1968) · Zbl 0157.16601 [3] Glazman, I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (1965), I.P.S.T: I.P.S.T Jerusalem · Zbl 0143.36505 [4] Hille, E., Nonoscillation theorems, Trans. Amer. Math. Soc., 64, 234-252 (1948) · Zbl 0031.35402 [5] Fort, T., Finite Differences and Difference Equations in the Real Domain (1948), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0030.11902 [6] McCarthy, P. J., Note on oscillation of solutions of second-order linear difference equations, Portugal. Math., 18, 203-205 (1959) · Zbl 0094.06102 [7] Naimark, M. A., Linear Differential Operators, Part II (1968), Ungar: Ungar New York · Zbl 0227.34020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.