×

A Vidav theorem for Banach Jordan algebras. (English) Zbl 0392.46038


MSC:

46L05 General theory of \(C^*\)-algebras
46H05 General theory of topological algebras
17C10 Structure theory for Jordan algebras

Citations:

Zbl 0384.46040
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF01186601 · Zbl 0071.11503
[2] Wright, A Russo Dye theorem for Jordan (1977)
[3] Glennie, Pacific J. Math. 16 pp 47– (1966) · Zbl 0134.26903
[4] Devapakkiam, Math. Japan 16 pp 115– (1971)
[5] Civin, Pacific J. Math. 15 pp 775– (1965) · Zbl 0135.35701
[6] Bonsall, Numerical ranges of operators on normed spaces and of elements of normed algebras (1971) · Zbl 0207.44802
[7] Bonsall, Complete normed algebras (1973)
[8] Bonsall, Math. Proc. Cambridge Philos. Soc. 81 pp 3– (1977)
[9] Arveson, An invitation to C*-algebras (1976) · Zbl 0344.46123
[10] Alfsen, A Gelfand?Neumark theorem for Jordan algebras (1975)
[11] DOI: 10.2307/1968118 · Zbl 0008.42104
[12] DOI: 10.2307/1969605 · Zbl 0075.21802
[13] DOI: 10.1090/S0002-9904-1947-08742-5 · Zbl 0031.36001
[14] DOI: 10.2307/1995390 · Zbl 0198.18001
[15] DOI: 10.1090/S0002-9904-1968-11998-6 · Zbl 0159.18503
[16] DOI: 10.1215/S0012-7094-49-01640-3 · Zbl 0033.18701
[17] DOI: 10.2307/1969657 · Zbl 0047.35703
[18] DOI: 10.2307/1968117 · Zbl 0008.42103
[19] Harris, Lecture Notes in Mathematics 364 (1974)
[20] Glimm, Pacific J. Math. 10 pp 347– (1960) · Zbl 0152.33001
[21] DOI: 10.2307/1994536 · Zbl 0136.11401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.