×

zbMATH — the first resource for mathematics

Doubly-indexed dynamical systems: State-space models and structural properties. (English) Zbl 0392.93034

MSC:
93E11 Filtering in stochastic control theory
93C55 Discrete-time control/observation systems
93B05 Controllability
93D99 Stability of control systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. D. O. Anderson, and E. I. Jury, Stability test for two-dimensional recursive filters,IEEE Trans. Audio Electroacost., AU-21, 366–372 (1973).
[2] B. D. O. Anderson, and E. I. Jury, Stability of Multidimensional Digital Filters,IEEE Trans. on Circuits and Systems, CAS-21, 300–304 (1974).
[3] S. Attasi, Systèmes lineaires homogènes à deux indices,Rapport LABORIA,31 (1973). · Zbl 0278.65124
[4] C. Farmer, and J. D. Bednar, Stability of spatial digital filters,Math. Biosci 14, 113–119 (1972). · Zbl 0242.94008 · doi:10.1016/0025-5564(72)90011-9
[5] M. Fliess, Matrices de Hankel,Jour. de Math. Pures et Appl.,53, 197–224 (1974). · Zbl 0315.94051
[6] E. Fornasini, and G. Marchesini, Algebraic Realization Theory of Two-Dimensional Filters, presented at the Variable Structure Systems, Conference, Portland, May (1974). · Zbl 0312.93042
[7] E. Fornasini, and G. Marchesini, State-Space Realization Theory of Two-Dimensional Filters,IEEE Trans. on Automatic Control, AC-21, 484–492 (1976). · Zbl 0332.93072
[8] E. Fornasini, and G. Marchesini, Reachability and Observability in Realization Theory of Spatial Filters, presented at Fifth ICEE, Shiraz, (1975). · Zbl 0312.93042
[9] E. Fornasini, and G. Marchesini, Two-Dimensional Filters: New Aspects of the Realization Theory, presented at Third Int. Joint Conf. on Pattern Recognition, Coronado, California, Nov. 8–11, (1976).
[10] E. Fornasini, and G. Marchesini, Computation of Reachable and Observable Realizations of Spatial Filters,Int. J. Control.,25, 4, 621–635 (1977). · Zbl 0352.93062 · doi:10.1080/00207177708922258
[11] D. D. Givone, and R. P. Roesser, Multidimensional Linear Iterative Circuits-General Properties,IEEE Trans. on Computers, C-21, 10, 1067–1073 (1972). · Zbl 0245.94016
[12] D. D. Givone, and R. P. Roesser, Minimization of Multidimensional Linear Iterative Circuits,IEEE Trans. on Computers, C-22, 7, 673–678 (1973). · Zbl 0256.94037
[13] L. Hörmander,An Introduction to Complex Analysis in Several Variables, Elsevier North-Holland 1973.
[14] T. S. Huang, Stability of two-dimensional recursive filters,IEEE Trans. Audio Electroacoust., AU-20, 158–163 (1972).
[15] J. H. Justice, and J. L. Shanks, Stability criterion forN-dimensional digital filters,IEEE Trans. Automat. Cont., AC-18, 284–286 (1973). · Zbl 0261.93043
[16] S. Kung, B. Lévy, M. Morf, T. Kailath, New Results in 2-D Systems Theory, Part I: 2-D Polynomial Matrices, Facotrization and Coprimeness, Part II: 2-D State-Space Models. Realization and the Notions of Controllability, Observability and Minimality,Proc. of IEEE,65, 6 (1977). · doi:10.1109/PROC.1977.10426
[17] B. Lévy, S. Y. Kung, M. Morf, New Results in 2-D Systems Theory, 2-D State-Space Models-Realization and the Notions of Controllability, Observability and Minimality, Conf. on Math. Problems in Multidimensional Systems, Nov. 12, (1976).
[18] S. K. Mitra, A. D. Sagar and N. A. Pendergrass, Realizations of Two-Dimensional Recursive Digital Filters,IEEE Trans. on Circuits and Systems, CAS-22, 3, 177–184 (1975).
[19] R. E. Mullans, and D. L. Elliott, Linear Systems on Partially Ordered Time Sets, in:Proc. 1973 IEEE Conf. on Decision and Control, 334–337 (1973).
[20] R. P. Roesser, A discrete State-Space Model for Linear Image Processing,IEEE Trans. on Automatic Control, AC-20,1, 1–10 (1975). · Zbl 0304.68099
[21] H. H. Rosenbrock,State-space and multivariable theory, Wiley, New York, 1970. · Zbl 0246.93010
[22] F. Severi,Lezioni sulle Funzioni Analitiche di più Variabili Complesse, Cedam, Padova, 1958.
[23] J. L. Shanks, S. Treitel and J. H. Justice, Stability and synthesis of two dimensional recursive filters,IEEE Trans. Audio Electroacoust., AU-20, 115–128 (1972).
[24] B. F. Wyman, Linear Difference Systems on Partially Ordered Sets, in Mathematical Systems Theory (G. Marchesini, S. K. Mitter eds.),Lect. Notes in Econ. and Math. Systems,131, Springer-Verlag, 92–110, (1976). · Zbl 0335.93032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.