×

Some zero-dimensional generic singularities; finite algebras having small tangent space. (English) Zbl 0393.14002


MSC:

14B12 Local deformation theory, Artin approximation, etc.
14B10 Infinitesimal methods in algebraic geometry
13B25 Polynomials over commutative rings
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] J. Briançon : Description de HilbN C[[x, y]] , Invent. Math. 41 (1977) 45-89. · Zbl 0353.14004
[2] J. Briançon and A. Galligo : Deformations Dintingués d’un Point; de C2 ou R2 , Asterisque, #7-8, pp. 129-138. · Zbl 0291.14004
[3] J. Damon and A. Galligo : A Topological Invariant for Stable Map Germs , Inventiones Math., 32 (1976) 103-132. · Zbl 0333.57017
[4] J. Damon : Topological Properties of Discrete Algebra Types, I: The Hilbert Samuel Function , to appear, advances of Math. · Zbl 0471.58005
[5] J. Damon : The Relation Between C\infty and Topological Stability, to appear , Proc. of 1976 Summer School in Singularities at I.M.P.A., Rio de Janeiro.
[6] D. Eisenbud and H. Levine : An algebraic formula for the degree of a C\infty map germ . Ann. of Math. 106, 1 (1977). · Zbl 0398.57020
[7] J. Emsalem and A. Iarrobino : Réseaux de Coniques et Algèbres de longuer 7 associées , preprint, L’Ecole Polytechnique.
[8] J. Fogarty : Algebraic Families on an Algebraic Surface , Amer. J. Math., 10 (1968) 511-521. · Zbl 0176.18401
[9] M. Golubitsky and N. Guilleman , Stable Mappings and their Singularities , Chap. VII, Springer-Verlag (1973), New York. · Zbl 0294.58004
[10] J. Grace and A. Young : Algebras of Invariants , Cambridge University Press (1903). · JFM 34.0114.01
[11] R. Hartshorne : Topological Conditions for Smoothing Algebraic Singularities , Topology, 13 (1974) 241-253. · Zbl 0288.14006
[12] J. Briançon and A. Iarrobino : Dimension of Hilbn Pr , to appear.
[13] A. Iarrobino : Reducibility of the Family of 0-dimensional Schemes on a Variety , Invent. Math., 15 (1972) 72-77. · Zbl 0227.14006
[14] A. Iarrobino : The Number of Generic Singularities , Rice University Studies, 59(1), (1973) 41-51. · Zbl 0272.14002
[15] A. Iarrobino : Vector Spaces of Forms I: Ancestor Ideals , preprint, The University of Texas, Austin. · Zbl 1119.13015
[16] I. Kaplansky : Commutative Rings , (1974), University of Chicago Press, Chicago. · Zbl 0296.13001
[17] D. Laksov : Deformations of Determinantal Schemes , Composito Math., 30 (1975) 273-292. · Zbl 0306.14022
[18] M. Levy-Nahas : Thèse, Sur les deformations et contractions d’algèbres de Lie et de leurs Representations , Université de Paris à Orsay, 1969.
[19] F.S. Macaulay : Modular Systems , Cambridge University Press, 1916. · JFM 46.0167.01
[20] J. Mather : Stability of C\infty Mappings IV: Classification of Stable Germs by R-algebras , Publ. I.H.E.S., 37 (1969) 223-248. · Zbl 0202.55102
[21] M. Schaps : Deformations of Cohen-Macaulay Schemes of Codimension 2 and Nonsingular Deformations of Space Curves , 23 pp. (preprint). · Zbl 0358.14006
[22] M. Schlessinger : Rigidity of Quotient Singularities , Invent. Math., 14 (1971) 17-26. · Zbl 0232.14005
[23] M. Schlessinger : On Rigid Singularities , Rice University Studies, 51(1), (1973) 147-162. · Zbl 0279.32006
[24] G. Tjurina : Locally Semi-universal Flat Deformations of Isolated Singularities of Complex Spaces , Math. USSR, Izvestya, Vol. 3, 1970, pp. 967-999. · Zbl 0209.11301
[25] M. Vergne : Reducibilité des algebres de Lie nilpotentes , C.R. Acad. Sci., Paris, t. 263, p. 4-6 (1966). · Zbl 0145.25902
[26] O. Zarishi and P. Samuel : Commutative Algebra , Vol. II, (1960), Van Nostrand, Princeton. · Zbl 0121.27801
[27] H. Kleppe : Deformations of schemes defined by vanishing of Pfaffians , preprint, University of Oslo. · Zbl 0384.14004
[28] J. Emsalem : Géométrie des points épais , to appear. · Zbl 0396.13017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.