×

The \(K_2\) of rings with many units. (English) Zbl 0393.18012


MSC:

18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
13D15 Grothendieck groups, \(K\)-theory and commutative rings

References:

[1] M. ARTIN , Théorème de Weil sur la construction d’un groupe à partir d’une loi rationnelle, Schémas en Groupes II, SGA 3 (Lecture Notes in Math., N^\circ 152, Springer, Berlin, 1970 , pp. 632-653).
[2] M. AUSLANDER and O. GOLDMAN , The Brauer Group of a Commutative Ring (Trans. Amer. Math. Soc., Vol. 97, 1960 , pp. 367-409). MR 22 #12130 | Zbl 0100.26304 · Zbl 0100.26304 · doi:10.2307/1993378
[3] N. BOURBAKI , Groupes et Algèbres de Lie , Fasc. 34, Chap. VI, Actualités Sc. Indust., N^\circ 1337, Hermann, Paris, 1968 . Zbl 0186.33001 · Zbl 0186.33001
[4] S. CHASE , D. HARRISON and A. ROSENBERG , Galois Theory and Galois Cohomology of Commutative Rings (Memoirs of the Amer. Math. Soc., Vol. 52, 1965 , pp. 1-19). MR 33 #4118 | Zbl 0143.05902 · Zbl 0143.05902
[5] C. CHEVALLEY , Certains schémas de groupes semi-simples (Séminaire Bourbaki, 13e année, 1960 - 1961 , Exp. 219). Numdam | Zbl 0125.01705 · Zbl 0125.01705
[6] R. K. DENNIS and M. R. STEIN , Injective Stability for K2 of Local Rings (Bull. Amer. Math. Soc., Vol. 80, 1974 , pp. 1010-1013). Article | MR 51 #8097 | Zbl 0299.18007 · Zbl 0299.18007 · doi:10.1090/S0002-9904-1974-13614-1
[7] R. K. DENNIS and M. R. STEIN , The functor K2 : A Survey of Computations and Problems , Algebraic K-Theory II (Lecture Notes in Math., N^\circ 342, Springer, Berlin, 1973 , pp. 243-280). MR 50 #7292 | Zbl 0271.18011 · Zbl 0271.18011
[8] R. K. DENNIS and M. R. STEIN , K2 of discrete valuation rings (Advances in Math., Vol. 18, 1975 , pp. 182-238). MR 55 #10544 | Zbl 0318.13017 · Zbl 0318.13017 · doi:10.1016/0001-8708(75)90157-7
[9] D. ESTES and J. OHM , Stable Range in Commutative Rings (J. Algebra, Vol. 7, 1967 , pp. 343-362). MR 36 #147 | Zbl 0156.27303 · Zbl 0156.27303 · doi:10.1016/0021-8693(67)90075-0
[10] J. E. HUMPHREYS , Linear Algebraic Groups (Graduate texts in math., Vol. 21, Springer, Berlin, 1975 ). MR 53 #633 | Zbl 0325.20039 · Zbl 0325.20039
[11] W. VAN DER KALLEN , Injective Stability for K2 , Algebraic K-Theory (Proceedings of the Northwestern conference 1976 , Springer Lecture Notes in Math., N^\circ 551, Springer, Berlin, 1976 , pp. 77-154). MR 58 #22243 | Zbl 0349.18009 · Zbl 0349.18009
[12] W. VAN DER KALLEN , H. MAAZEN and J. STIENSTRA , A Presentation for Some K2 (n, R) (Bull. Amer. Math. Soc., Vol. 81, 1975 , pp. 934-936). Article | MR 51 #12993 | Zbl 0337.13012 · Zbl 0337.13012 · doi:10.1090/S0002-9904-1975-13894-8
[13] F. KEUNE , (t2-t)-Reciprocities on the Affine Line and Matsumoto’s Theorem (Invent. Math., Vol. 28, 1975 , pp. 185-192). MR 52 #13740 | Zbl 0331.18017 · Zbl 0331.18017 · doi:10.1007/BF01436072
[14] M. KNUS and M. OJANGUREN , A Norm for Modules and Algebras (Math. Z., Vol. 142, 1975 , pp. 33-45). Article | MR 51 #3139 | Zbl 0297.13009 · Zbl 0297.13009 · doi:10.1007/BF01214847
[15] M. KNUS et M. OJANGUREN , Théorie de la descente et algèbres d’Azumaya (Lecture Notes in Math., N^\circ 389, Springer, Berlin, 1974 ). MR 54 #5209 | Zbl 0284.13002 · Zbl 0284.13002 · doi:10.1007/BFb0057799
[16] H. MAAZEN and J. STIENSTRA , A Presentation for K2 of Split Radical Pairs (to appear in J. Pure and Appl. Algebra). Zbl 0393.18013 · Zbl 0393.18013 · doi:10.1016/0022-4049(77)90007-X
[17] H. MATSUMOTO , Sur les sous-groupes arithmétiques des groupes semi-simples déployés (Ann. scient. Ec. Norm. Sup. (4), N^\circ 2, 1969 , pp. 1-62). Numdam | MR 39 #1566 | Zbl 0261.20025 · Zbl 0261.20025
[18] J. MILNOR , Introduction to Algebraic K-Theory (Ann. Math. Studies, Vol. 72, Princeton University Press, Princeton, 1971 ). MR 50 #2304 | Zbl 0237.18005 · Zbl 0237.18005
[19] M. R. STEIN , Generators, Relations and Coverings of Chevalley Groups Over Commutative Rings (Amer. J. Math., Vol. 93, 1971 , pp. 965-1004). MR 48 #437 | Zbl 0246.20034 · Zbl 0246.20034 · doi:10.2307/2373742
[20] M. R. STEIN , Stability Theorems for K1, K2 and Related Functors Modelled on Chevalley Groups (to appear).
[21] M. R. STEIN , Surjective Stability in Dimension 0 for K2 and Related Functors (Trans. Amer. Math. Soc., Vol. 178, 1973 , pp. 165-191). MR 48 #6267 | Zbl 0267.18015 · Zbl 0267.18015 · doi:10.2307/1996696
[22] R. STEINBERG , Générateurs, relations et revêtements de groupes algébriques (Colloque sur la théorie des groupes algébriques, Bruxelles, 1962 , pp. 113-127). MR 27 #3638 | Zbl 0272.20036 · Zbl 0272.20036
[23] A. A. SUSLIN and M. S. TULENBAYEV , A stabilization Theorem for Milnor’s K2 Functor [(Russian), Zapiski Naučnyh Seminarov LOMI, Tom. 64, Leningrad, 1976 , pp. 131-152]. Zbl 0356.18014 · Zbl 0356.18014
[24] L. N. VASERSTEIN , Stable Rank of Rings and Dimensionality of Topological Spaces [Funkcional. Anal. i Prilozen, (2), N^\circ 5, 1971 , pp. 17-27 (Consultants Bureau Translation, 102-110)]. MR 44 #1701 | Zbl 0239.16028 · Zbl 0239.16028 · doi:10.1007/BF01076414
[25] L. N. VASERSTEIN , On the Stabilization of Milnor’s K2 Functor [(Russian), Uspehi Mat. Nauk, Vol. 30, N^\circ 1, 1975 , p. 224]. MR 53 #8198 | Zbl 0326.18009 · Zbl 0326.18009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.