×

zbMATH — the first resource for mathematics

A presentation for \(K_2\) of split radical pairs. (English) Zbl 0393.18013

MSC:
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
13D15 Grothendieck groups, \(K\)-theory and commutative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bloch, S., K2 of Artinian \(Q\)-algebras with applications to algebraic cycles, Communications in alg., 3, 405-428, (1975) · Zbl 0327.14002
[2] Cohen, I.S., On the structure and ideal theory of complete local rings, Trans. amer. math. soc., 59, 54-106, (1946) · Zbl 0060.07001
[3] Dennis, R.K.; Stein, M.R., K2 of discrete valuation rings, Advances in math., 18, 182-238, (1975) · Zbl 0318.13017
[4] Dennis, R.K.; Stein, M.R., The functor K2: A survey of computations and problems, (), 243-280
[5] van der Kallen, W.L.J., Sur le K2 des nombres duaux, C.R. acad. sci. Paris, 273, 1204-1207, (1971) · Zbl 0225.13006
[6] van der Kallen, W.L.J.; Maazen, H.; Stienstra, J., A presentation for some K2(n, R), Bull. amer. math. soc., 81, 934-936, (1975) · Zbl 0337.13012
[7] Milnor, J., Introduction to algebraic K-theory, () · Zbl 0237.18005
[8] Stein, M.R.; Dennis, R.K., K2 of radical ideals and semi-local rings revisited, (), 281-303
[9] Weiss, E., Algebraic number theory, (1963), McGraw-Hill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.