×

zbMATH — the first resource for mathematics

Problems in harmonic analysis related to curvature. (English) Zbl 0393.42010

MSC:
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
28A15 Abstract differentiation theory, differentiation of set functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249 – 304. · Zbl 0223.60021
[2] A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1 – 64. · Zbl 0315.46037
[3] A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85 – 139. · Zbl 0047.10201
[4] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289 – 309. · Zbl 0072.11501
[5] J. L. Clerc and E. M. Stein, \?^{\?}-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911 – 3912. · Zbl 0296.43004
[6] R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838 – 2839. · Zbl 0243.44006
[7] A. Cordoba and R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. (2) 102 (1975), no. 1, 95 – 100. · Zbl 0324.28004
[8] A. Córdoba and R. Fefferman, On differentiation of integrals, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 6, 2211 – 2213. · Zbl 0374.28002
[9] Eugene B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966/1967), 81 – 131. · Zbl 0144.35002
[10] Eugene B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966/1967), 81 – 131. · Zbl 0144.35002
[11] E. B. Fabes and N. M. Rivière, Symbolic calculus of kernels with mixed homogeneity, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 106 – 127.
[12] Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9 – 36. · Zbl 0188.42601
[13] C. Fefferman and E. M. Stein, \?^{\?} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137 – 193. · Zbl 0257.46078
[14] G. B. Folland and E. M. Stein, Estimates for the \partial _{\?} complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429 – 522. · Zbl 0293.35012
[15] Miguel de Guzmán, Differentiation of integrals in \?\(^{n}\), Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. · Zbl 0598.28006
[16] Edmund Hlawka, Über Integrale auf konvexen Körpern. I, Monatsh. Math. 54 (1950), 1 – 36 (German). · Zbl 0036.30902
[17] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. · Zbl 0032.05801
[18] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), no. 1, 81 – 116. · JFM 56.0264.02
[19] C. S. Herz, Fourier transforms related to convex sets, Ann. of Math. (2) 75 (1962), 81 – 92. · Zbl 0111.34803
[20] C. S. Herz, On the number of lattice points in a convex set, Amer. J. Math. 84 (1962), 126 – 133. · Zbl 0113.03703
[21] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147 – 171. · Zbl 0156.10701
[22] B. Frank Jones Jr., A class of singular integrals, Amer. J. Math. 86 (1964), 441 – 462. · Zbl 0123.08501
[23] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489 – 578. · Zbl 0257.22015
[24] Adam Koranyi, Harmonic functions on symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969 – 1970), Dekker, New York, 1972, pp. 379 – 412. Pure and Appl. Math., Vol. 8.
[25] Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766 – 770. · Zbl 0143.34701
[26] S. G. Mihlin, Singular integral equations, Amer. Math. Soc. Translation 1950 (1950), no. 24, 116.
[27] Alexander Nagel, Néstor Rivière, and Stephen Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc. 80 (1974), 106 – 108. , https://doi.org/10.1090/S0002-9904-1974-13374-4 Alexander Nagel, Néstor M. Rivière, and Stephen Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395 – 403. · Zbl 0334.44012
[28] Alexander Nagel, Néstor Rivière, and Stephen Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc. 80 (1974), 106 – 108. , https://doi.org/10.1090/S0002-9904-1974-13374-4 Alexander Nagel, Néstor M. Rivière, and Stephen Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395 – 403. · Zbl 0334.44012
[29] Alexander Nagel and Stephen Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235 – 252. · Zbl 0341.44005
[30] Alexander Nagel and Stephen Wainger, \?² boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math. 99 (1977), no. 4, 761 – 785. · Zbl 0374.44003
[31] Burton Randol, A lattice-point problem, Trans. Amer. Math. Soc. 121 (1966), 257 – 268. · Zbl 0135.10601
[32] Burton Randol, The asymptotic behavior of a Fourier transform and the localization property for eigenfunction expansions for some partial differential operators, Trans. Amer. Math. Soc. 168 (1972), 265 – 271. · Zbl 0251.42016
[33] N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243 – 278. · Zbl 0244.42024
[34] Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247 – 320. · Zbl 0346.35030
[35] E. M. Stein, On limits of seqences of operators, Ann. of Math. (2) 74 (1961), 140 – 170. · Zbl 0103.08903
[36] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[37] Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory., Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. · Zbl 0193.10502
[38] E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 173 – 189.
[39] Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174 – 2175. Elias M. Stein, Maximal functions. II. Homogeneous curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2176 – 2177. Elias M. Stein, Maximal functions: Poisson integrals on symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 8, 2547 – 2549. · Zbl 0332.42018
[40] Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174 – 2175. Elias M. Stein, Maximal functions. II. Homogeneous curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2176 – 2177. Elias M. Stein, Maximal functions: Poisson integrals on symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 8, 2547 – 2549. · Zbl 0332.42018
[41] Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174 – 2175. Elias M. Stein, Maximal functions. II. Homogeneous curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2176 – 2177. Elias M. Stein, Maximal functions: Poisson integrals on symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 8, 2547 – 2549. · Zbl 0332.42018
[42] Elias M. Stein and Stephen Wainger, The estimation of an integral arising in multiplier transformations., Studia Math. 35 (1970), 101 – 104. · Zbl 0202.12401
[43] E. M. Stein and S. Wainger, Maximal functions associated to smooth curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 12, 4295 – 4296. · Zbl 0348.42016
[44] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. · Zbl 0232.42007
[45] Jan-Olov Strömberg, Weak estimates on maximal functions with rectangles in certain directions, Ark. Mat. 15 (1977), no. 2, 229 – 240. · Zbl 0376.26007
[46] Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477 – 478. · Zbl 0298.42011
[47] François Trèves, Basic linear partial differential equations, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 62. · Zbl 0305.35001
[48] Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1 – 18. · Zbl 0021.23501
[49] Felipe Zo, A note on approximation of the identity, Studia Math. 55 (1976), no. 2, 111 – 122. · Zbl 0326.44005
[50] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. · Zbl 0085.05601
[51] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189 – 201. · Zbl 0278.42005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.