Near-optimum design of nonstationary linear systems with state and control delays. (English) Zbl 0394.49017


49K40 Sensitivity, stability, well-posedness
93C05 Linear systems in control theory
93C99 Model systems in control theory
34K35 Control problems for functional-differential equations
Full Text: DOI


[1] Chosky, N. H.,Time Delay Systems?A Bibliography, IEEE Transactions on Automatic Control, Vol. AC-5, pp. 66-70, 1960.
[2] Lee, E. B.,Variational Problems for Systems Having Delay in the Control Action, IEEE Transactions on Automatic Control, Vol. AC-13, pp. 697-699, 1968. · doi:10.1109/TAC.1968.1099029
[3] Kharatishvili, G. L.,The Maximum Principle in the Theory of Optimal Processes with Time Lags, Doklady Akad Nauk USSR, Vol. 136, pp. 39-42, 1961.
[4] Kharatishvili, G. L.,A Maximum Principle in Extremal Problems with Delays, Mathematical Theory of Control, Edited by A. V. Balakrishnan and L. W. Neustadt, Academic Press, New York, New York, 1967. · Zbl 0216.17701
[5] Eller, D. H., Aggarwal, J. K., andBanks, H. T.,Optimal Control of Linear Time-Delay Systems, IEEE Transactions on Automatic Control, Vol. AC-14, pp. 678-687, 1969. · doi:10.1109/TAC.1969.1099301
[6] Alekal, Y., Brunovsky, P., Chyung, D. H., andLee, E. B.,The Quadratic Problem for Systems with Time Delays, IEEE Transactions on Automatic Control, Vol. AC-16, pp. 673-687, 1971. · doi:10.1109/TAC.1971.1099824
[7] Krasovskii, N. N.,Optimal Processes in Systems with Time Lags, Proceedings of the 2nd IFAC Congress, Basel, Switzerland, 1963. · Zbl 0109.06001
[8] Ross, D. W., andFlügge-Lotz, I.,An Optimal Control Problem for Systems with Differential Difference Equation Dynamics, SIAM Journal on Control, Vol. 7, pp. 609-623, 1969. · Zbl 0186.48601 · doi:10.1137/0307044
[9] Koivo, H. N., andLee, E. B.,Control Synthesis for Linear Systems with Retarded State and Control Variables and Quadratic Cost, Automatica, Vol. 8, pp. 203-208, 1972. · Zbl 0231.49009 · doi:10.1016/0005-1098(72)90068-4
[10] Aggarwal, J. K.,Computation of Optimal Control for Time-Delay Systems, IEEE Transactions on Automatic Control, Vol. AC-15, pp. 683-685, 1970. · doi:10.1109/TAC.1970.1099605
[11] Werner, R. A., andCruz, J. B.,Feedback Control Which Preserves Optimality for Systems with Unknown Parameters, IEEE Transactions on Automatic Control, Vol. AC-13, pp. 621-629, 1968. · doi:10.1109/TAC.1968.1099033
[12] Sannuti, P., andKokotovic, P.,Near-Optimum Design of Linear Systems by a Singular Perturbation Method, IEEE Transactions on Automatic Control, Vol. AC-14, pp. 15-21, 1969. · doi:10.1109/TAC.1969.1099113
[13] Inoue, K., Akashi, H., Ogino, K., andSawaragi, Y.,Sensitivity Approaches to Optimization of Linear Systems with Time Delay, Automatica, Vol. 7, pp. 671-679, 1971. · Zbl 0225.49009 · doi:10.1016/0005-1098(71)90005-7
[14] Jamshidi, M., andMalek-Zavarei, M.,Suboptimal Design of Linear Control Systems with Time Delay, IEE Proceedings, Vol. 119, pp. 1743-1746, 1972.
[15] Chan, H. C., andPerkins, W. R.,Optimization of Time Delay Systems Using Parameter Imbedding, Automatica, Vol. 9, pp. 257-261, 1973. · Zbl 0248.49021 · doi:10.1016/0005-1098(73)90080-0
[16] Jamshidi, M.,Sub-Optimal Control of Coupled Time-Delay Systems, International Journal of Control, Vol. 17, pp. 995-1008, 1973. · Zbl 0254.49014 · doi:10.1080/00207177308932443
[17] Soliman, M. A., andRay, W. H.,Optimal Feedback Control for Linear Quadratic Systems Having Time Delays, International Journal of Control, Vol. 15, pp. 609-627, 1972. · Zbl 0236.49031 · doi:10.1080/00207177208932179
[18] Mcaulay, R. J.,A Gradient Method for Systems with Time Delays and Its Application to Waveform Design, IEEE Transactions on Automatic Control, Vol. AC-14, pp. 230-237, 1969. · doi:10.1109/TAC.1969.1099174
[19] Gracovetsky, S. A., andVidyasagar, M.,Suboptimal Control of Neutral Systems, International Journal of Control, Vol. 18, pp. 121-128, 1973. · Zbl 0276.49029 · doi:10.1080/00207177308932492
[20] Kalman, R. E.,Contributions to the Theory of Optimal Control, Boletin de la Sociedad Matematica Mexicana, Vol. 5, pp. 102-119, 1960. · Zbl 0112.06303
[21] Mueller, T. E.,Optimal Control of Linear Systems with Time Lag, University of Illinois, Urbana, Illinois, Coordinated Science Laboratory, Report No. R-254, 1965. · Zbl 0139.25303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.