Extremal properties of half-spaces for spherically invariant measures. (English) Zbl 0395.28007


28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)


Zbl 0351.28015
Full Text: DOI


[1] J. Tippe, ?Zur isoperimetrischen Eigenschaft der Kugel in Riemannischen Räumen konstanter positiver Krümmung,? Math. Ann.,152, No. 2, 120?148 (1963). · Zbl 0131.20204
[2] E. Schmidt, ?Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionzahl,? Math. Z.,49, 1?109 (1943). · Zbl 0028.31303
[3] V. N. Sudakov, ?Geometric problems in the theory of infinite-dimensional probability distributions.? Thesis, Leningrad State University (1972).
[4] X. Fernique, ?Integrabilite des vecteurs gaussiens,? C. R. Acad. Sci., Paris,270, 1698?1699 (1970).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.