zbMATH — the first resource for mathematics

Strong solutions for parabolic variational inequalities. (English) Zbl 0395.35045

35K55 Nonlinear parabolic equations
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
35A15 Variational methods applied to PDEs
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
49S05 Variational principles of physics
Zbl 0252.47055
Full Text: DOI
[1] Brezis, H., Opérateurs marimaux monotones dans LES espaces de Hilbert et équations d’évolution, ()
[2] Kato, T., Nonlinear semi-groups and evolution equations, J. math. soc. Japan, 19, 508-520, (1967) · Zbl 0163.38303
[3] Crandall, M.; Pazy, A., Nonlinear evolution equations in Banach spaces, Israel J. math., 11, 57-94, (1972) · Zbl 0249.34049
[4] Martin, R.H., Generating an evolution system in a class of uniformly convex Banach spaces, J. funct. anal., 11, 62-76, (1972) · Zbl 0249.47065
[5] Watanabe, J., On certain nonlinear evolution equations, J. math. soc. Japan, 25, 446-463, (1973) · Zbl 0253.35053
[6] Attouch, H.; Damlamian, A., Problèmes d’évolution dans LES Hilbert et applications, J. math. pures appl., 54, 53-74, (1975) · Zbl 0293.35041
[7] Maruo, K., On some evolution equations of subdifferential operators, Proc. Japan acad., 51, 304-307, (1975) · Zbl 0328.34060
[8] Kenmochi, N., The semi-discretisation method and nonlinear time-dependent parabolic variational inequalities, Proc. Japan acad., 50, 714-717, (1975) · Zbl 0335.49004
[9] Moreau, J.J., Rétraction d’une multiapplication, Séminaire d’analyse convexe, (1972), Exposé n°13. · Zbl 0353.49033
[10] Peralba, J.C., Un problème d’évolution relatif à un opérateur sous-différentiel dépendant du temps, C.r. acad. sci., Paris, 275, 93-96, (1972) · Zbl 0238.35018
[11] Attouch, H.; Benilan, P.; Damlamian, A.; Picard, C., Inéquations variationnelles d’évolution avec conditions unilatérales, C.r. acad. sci. Paris, 279, 607-609, (1974), Ser. A · Zbl 0309.34049
[12] {\scAttouch} H. & {\scDamlamian} A., Application des méthodes de convexité et de monotonie à l’étude de certaines équations quasi-linéaires, to appear in Proc. R. Soc. Edinburgh. · Zbl 0374.35022
[13] {\scAttouch} H., Mesurabilité et Monotonie, Thése.
[14] Picard, C., Equations d’évolution avec condition unilatérale, Séminaire Lions-brézis, (1973 1974), (Paris VI).
[15] {\scAttouch} H., {\scBenilan} P., {\scDamlamian} A. & {\scPicard} C., Une résolution \( de du/ dt + A(t)u + ∂φ\^{}\{t\}(u)∋⨍\);, to appear.
[16] Brezis, H., Un problème d’évolution avec contraintes unilatérales dépendant du temps, C.r. acad. sci. Paris, 274, 310-312, (1972) · Zbl 0231.35040
[17] {\scRudin} W., Real and Complex Analysis. McGraw Hill.
[18] Damlamian, A., Thesis, (1974), Harvard University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.