Lions, Pierre-Louis Une méthode itérative de résolution d’une inéquation variationnelle. (French) Zbl 0395.49013 Isr. J. Math. 31, 204-208 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 24 Documents MSC: 49J40 Variational inequalities 49M99 Numerical methods in optimal control 47H05 Monotone operators and generalizations 65J15 Numerical solutions to equations with nonlinear operators 65K10 Numerical optimization and variational techniques Keywords:Iterative Method; Maximal Monotone Operator PDF BibTeX XML Cite \textit{P.-L. Lions}, Isr. J. Math. 31, 204--208 (1978; Zbl 0395.49013) Full Text: DOI OpenURL References: [1] H. Brezis and F. E. Browder,Non-linear ergodic theorems, Bull. Amer. Math. Soc.82 (1976), 959–961. · Zbl 0339.47029 [2] H. Brezis et P. L. Lions,Produits infinis de résolvantes, Israel J. Math.29 (1978), 329–345. · Zbl 0387.47038 [3] R. E. Bruck,An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bull. Amer. Math. Soc.81 (1975), 890–892 (voir également le Corrigendum82 (1976)). · Zbl 0332.49005 [4] R. E. Bruck,Weak convergence of an ergodic iteration, preprint. · Zbl 0423.47023 [5] R. E. Bruck,On the strong convergence of an iteration for the solution of operator equations involving monotone operators in Hilbert space, preprint. · Zbl 0399.47048 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.