×

zbMATH — the first resource for mathematics

Codimension two submanifolds of positive curvature. (English) Zbl 0395.53024

MSC:
53C40 Global submanifolds
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. S. Chen, On tight isometric immersion of codimension two, Amer. J. Math. 94 (1972), 974 – 990. · Zbl 0253.53050
[2] Nicolaas H. Kuiper, Minimal total absolute curvature for immersions, Invent. Math. 10 (1970), 209 – 238. · Zbl 0195.51102
[3] Daniel Meyer, Sur les variétés riemanniennes à opérateur de courbure positif, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A482 – A485 (French). · Zbl 0209.25301
[4] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. · Zbl 0108.10401
[5] John Milnor, Lectures on the \?-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. · Zbl 0161.20302
[6] John Douglas Moore, Submanifolds of constant positive curvature. I, Duke Math. J. 44 (1977), no. 2, 449 – 484. · Zbl 0361.53050
[7] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[8] Alan Weinstein, Positively curved \?-manifolds in \?\(^{n}\)\(^{+}\)², J. Differential Geometry 4 (1970), 1 – 4. · Zbl 0194.52903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.