Kemp, R. The average number of registers needed to evaluate a binary tree optimally. (English) Zbl 0395.68059 Acta Inf. 11, 363-372 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 25 Documents MSC: 68R10 Graph theory (including graph drawing) in computer science 68W99 Algorithms in computer science 26-04 Software, source code, etc. for problems pertaining to real functions 33-04 Software, source code, etc. for problems pertaining to special functions Keywords:Binary Tree; Registers; Asymptotic Expansion; Enumeration PDF BibTeX XML Cite \textit{R. Kemp}, Acta Inf. 11, 363--372 (1979; Zbl 0395.68059) Full Text: DOI OpenURL References: [1] Chandrasekharan, K.: Arithmetical Functions, Band 167. Springer-Verlag 1970 · Zbl 0217.31602 [2] deBruijn, N.G., Knuth, D.E., Rice, S.O.: The average height of planted plane trees. In: Graph Theory and Computing, (R.C. Read, Ed.), pp. 15-22. New York-London: Ac. Press 1972 · Zbl 0247.05106 [3] deBruijn, N.G.: On Mahler’s partition problem. Koninklijke Nederlandsche Akademie van Wetenschappen, Proceedings Vol. LI, No. 6, 659-669 (1948) · Zbl 0030.34502 [4] Kemp, R.: The average number of registers needed to evaluate a binary tree optimally. Technical Report A77/04, Universität des Saarlandes, Saarbrücken, 1977 · Zbl 0395.68059 [5] Nakata, I.: On compiling algorithms for arithmetic expressions. Comm. ACM 10, 492-494 (1967) · Zbl 0154.41901 [6] Sethi, R., Ullman, J.D.: The generation of optimal code for arithmetic expressions. JACM 17, 715-728 (1970) · Zbl 0212.18802 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.