×

zbMATH — the first resource for mathematics

A finite element for the numerical solution of viscous incompressible flows. (English) Zbl 0395.76040

MSC:
76D99 Incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bercovier, M., These de doctoral d’état, (1976), Rouen
[2] {\scM. Bercovier and E. Livne}, A 4-CST quadrilateral element for incompressible and nearly incompressible materials, Calcolo, to appear. · Zbl 0418.73009
[3] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, R. 2 aout, (1974) · Zbl 0338.90047
[4] Burgraff, O.D., Analytical and numerical studies of the structure of steady separated flows, J. fluid mech., 24, (1966)
[5] Chorin, A.J., A numerical method for solving incompressible viscous problems, J. computational phys., 2, (1967) · Zbl 0168.46501
[6] Ciarlet, P.G.; Raviart, P.A., The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, () · Zbl 0262.65070
[7] Crouzeix, M.; Raviart, P.A., Conforming and non-conforming elements methods for solving the stationary Stokes equations, Rairo, r.3, (1973) · Zbl 0302.65087
[8] Fortin, M., These de doctoral d’état, (1972), Paris
[9] Falk, R.S., On analysis of the penalty and extrapolation method for the stationary Stokes equations, ()
[10] Fried, I., Finite element analysis of incompressible for incompressible viscous flows, Internal. J. solids structures, 10, 993-1002, (1974) · Zbl 0281.73045
[11] {\scY. Hasbani and M. Engelman}, Out-of-core solution algorithms for non-symmetric sparse matrices, Computers and Fluids, to appear. · Zbl 0393.76001
[12] Hughes, T.J.R.; Taylor, R.L.; Levy, J.F., A finite element method for incompressible viscous flows, (), preprints of · Zbl 0442.76027
[13] {\scR. Jones}, “QNESH: A Self-Organising Mesh Generation Program,” Technical Report SLA-73-1088, Sandia Laboratories, Alberqueque, N.M.
[14] Malkus, D.S., Finite element analysis of incompressible solids, () · Zbl 0472.73088
[15] Malkus, D.S., Finite element displacement model valid for any value of the compressibility, Internal. J. solids structures, 12, 731-738, (1976) · Zbl 0342.73054
[16] Naylor, D.J., Stresses in nearly incompressible materials by finite elements, I.j.n.m.e., 8, (1974) · Zbl 0282.73048
[17] {\scM. C. Pelissier}, Resolution numerique de quelques probèmes raides en mécanique des milieux faiblement compressibles, Calcolo, to appear. · Zbl 0328.65060
[18] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using F.E.M. technique, Computers and fluids, 1, (1973) · Zbl 0328.76020
[19] Teman, R., Une méthode d’approximation de la solution des equations de Navier-Stokes, Bull. soc. math. France, 96, (1968)
[20] Teman, R., Navier-Stokes equations, (1976), North-Holland Amsterdam · Zbl 0406.35053
[21] Zienkiewicz, O.C.; Godbole, P.N., Viscous incompressible flows with special reference to non-Newtonian (plastic) fluids, () · Zbl 0271.73038
[22] Zienkiewicz, O.C.; Taylor, C.R.; Too, J.M., Reduced integration technique in general analysis of plates and shells, I.j.n.m.e., 3, (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.