×

A finite element for the numerical solution of viscous incompressible flows. (English) Zbl 0395.76040


MSC:

76D99 Incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bercovier, M., These de Doctoral d’État (1976), Rouen
[2] M. Bercovier and E. LivneCalcolo; M. Bercovier and E. LivneCalcolo · Zbl 0418.73009
[3] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, R. 2 Aout (1974) · Zbl 0338.90047
[4] Burgraff, O. D., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24 (1966)
[5] Chorin, A. J., A numerical method for solving incompressible viscous problems, J. Computational Phys., 2 (1967) · Zbl 0168.46501
[6] Ciarlet, P. G.; Raviart, P. A., The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, (Aziz, A. K., The Mathematical Foundations of the F.E.M. with Applications to P. D. E (1972), Academic Press: Academic Press New York) · Zbl 0262.65070
[7] Crouzeix, M.; Raviart, P. A., Conforming and non-conforming elements methods for solving the stationary Stokes equations, RAIRO, R.3 (1973) · Zbl 0302.65087
[8] Fortin, M., These de Doctoral d’État (1972), Paris
[9] Falk, R. S., On analysis of the penalty and extrapolation method for the stationary Stokes equations, (Vichnevetsky, R., Advances in Computer Methods for P.D.E.,’s. Advances in Computer Methods for P.D.E.,’s, Proceedings of AICA Symposium (1975))
[10] Fried, I., Finite element analysis of incompressible for incompressible viscous flows, Internal. J. Solids Structures, 10, 993-1002 (1974) · Zbl 0281.73045
[11] Y. Hasbani and M. EngelmanComputers and Fluids; Y. Hasbani and M. EngelmanComputers and Fluids · Zbl 0393.76001
[12] Hughes, T. J.R.; Taylor, R. L.; Levy, J. F., A Finite Element Method for Incompressible Viscous Flows, (2nd Int. Symp. on F.E.M. Methods in Flow Problems (June 14-18 1976), S. Margherita Ligure: S. Margherita Ligure Italy), preprints of · Zbl 0442.76027
[13] R. Jones; R. Jones
[14] Malkus, D. S., Finite Element Analysis of Incompressible Solids, (Ph.D. Thesis (1975), Boston University: Boston University Boston) · Zbl 0472.73088
[15] Malkus, D. S., Finite element displacement model valid for any value of the compressibility, Internal. J. Solids Structures, 12, 731-738 (1976) · Zbl 0342.73054
[16] Naylor, D. J., Stresses in nearly incompressible materials by finite elements, I.J.N.M.E., 8 (1974) · Zbl 0282.73048
[17] M. C. PelissierCalcolo; M. C. PelissierCalcolo · Zbl 0328.65060
[18] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using F.E.M. technique, Computers and Fluids, 1 (1973) · Zbl 0328.76020
[19] Teman, R., Une méthode d’approximation de la solution des equations de Navier-Stokes, Bull. Soc. Math. France, 96 (1968) · Zbl 0181.18903
[20] Teman, R., Navier-Stokes Equations (1976), North-Holland: North-Holland Amsterdam · Zbl 0406.35053
[21] Zienkiewicz, O. C.; Godbole, P. N., Viscous incompressible flows with special reference to non-newtonian (plastic) fluids, (Finite Element Method in Flow Problems (1975), Wiley: Wiley New York) · Zbl 0271.73038
[22] Zienkiewicz, O. C.; Taylor, C. R.; Too, J. M., Reduced integration technique in general analysis of plates and shells, I.J.N.M.E., 3 (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.