×

zbMATH — the first resource for mathematics

A lower bound for the controlling parameters of the exact penalty functions. (English) Zbl 0395.90071

MSC:
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J.W. Bandler and C. Charalambous, ”Nonlinear programming using minimax techniques”,Journal of Optimization Theory and Applications 13 (1974) 607–619. · Zbl 0261.90061 · doi:10.1007/BF00933620
[2] C. Charalambous and A.R. Conn, ”An efficient method to solve the minimax problem directly”,SIAM Journal of Numerical Analysis 15 (1978) 162–187. · Zbl 0384.65032 · doi:10.1137/0715011
[3] A.R. Conn, ”Constrained optimization using nondifferentiable penalty functions”,SIAM Journal of Numerical Analysis 10 (1973) 760–784. · Zbl 0259.90039 · doi:10.1137/0710063
[4] A.R. Conn, ”Linear programming via a nondifferentiable penalty function”,SIAM Journal of Numerical Analysis 13 (1976) 145–154. · Zbl 0333.90029 · doi:10.1137/0713016
[5] A.R. Conn and T. Pietrzykowski, ”A penalty function method converging directly to a constraint optimum”,SIAM Journal of Numerical Analysis 14 (1977) 348–375. · Zbl 0361.90076 · doi:10.1137/0714022
[6] J.P. Evans, F.J. Gould and J.W. Tolle, ”Exact penalty functions in nonlinear programming”,Mathematical Programming 4 (1973) 72–97. · Zbl 0267.90079 · doi:10.1007/BF01584647
[7] A.V. Fiacco and G.P. McCormick,Nonlinear programming: Sequential unconstrained minimization techniques, Wiley, New York (1968). · Zbl 0193.18805
[8] G.H. Hardy, J.E. Littlewood and G. Polya,Inequalities (Cambridge University Press, 1934). · Zbl 0010.10703
[9] D.G. Luenberger, ”Control problems with kinks”,IEEE Transactions on Automatic Control AC-15 (1970) 570–574.
[10] T. Pietrzykowski, ”An exact potential method for constrained maxima”,SIAM Journal of Numerical Analysis 6 (1969) 299–304. · Zbl 0181.46501 · doi:10.1137/0706028
[11] J.B. Rosen, ”The gradient projection method for nonlinear programming. Part II: Nonlinear constraints”,Journal of the Society of Industrial Applied Mathematics 9 (1961) 514–432. · Zbl 0231.90048 · doi:10.1137/0109044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.