×

Algorithmische Probleme bei Einrelatorgruppen und ihre Komplexität. (German) Zbl 0396.03040


MSC:

03D80 Applications of computability and recursion theory
03D40 Word problems, etc. in computability and recursion theory
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
03D15 Complexity of computation (including implicit computational complexity)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Avenhaus, J., Madlener, K.:E n -E n–1-entscheidbare Gruppen. Autom. Theor. Form. Lang., Lect. Notes Comp. Sci.33, 42–51 (1975). · Zbl 0314.02055 · doi:10.1007/3-540-07407-4_5
[2] Cannonito, F.B., Gatterdam, R.W.: The word problem in polycyclic groups is elementary. Compositio Math.27, 39–45 (1973). · Zbl 0279.20028
[3] Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Annalen106, 295–307 (1932). · doi:10.1007/BF01455888
[4] McCool, J., Schupp, P.: On one relator groups and HNN-extensions. J. Austral. Math. Soc.16, 249–256 (1973). · Zbl 0288.20046 · doi:10.1017/S1446788700014300
[5] Moldavanskii, D.: Certain subgroups of groups with one defining relator. Siberian Math. J.8, 1370–1384 (1967). · Zbl 0169.33602 · doi:10.1007/BF02196411
[6] Newman, B.B.: Some results on one relator groups. Bull. Amer. Math. Soc.74, 568–571 (1968). · Zbl 0174.04603 · doi:10.1090/S0002-9904-1968-12012-9
[7] Rotman, J.J.: The theory of groups, 2. Edit. Boston (1973).
[8] Weihrauch, K.: Teilklassen primitiv-rekursiver Wortfunktionen. GMD Berichte, Bonn, Nr. 91 (1974). · Zbl 0293.02026
[9] Cannonito, F.B., Gatterdam, R.W.: The word problem and power problem in 1-relator groups are primitive recursive. Pacific J. Math.61, 351–359 (1975). · Zbl 0335.02029 · doi:10.2140/pjm.1975.61.351
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.