×

zbMATH — the first resource for mathematics

On the description of the reduced Witt ring. (English) Zbl 0396.10012

MSC:
11E10 Forms over real fields
12D15 Fields related with sums of squares (formally real fields, Pythagorean fields, etc.)
12J15 Ordered fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Becker, E.; Köpping, E., Reduzierte quadratische formen und semiordnungen reeller Körper, Abh. math. sem. univ. Hamburg, 46, 143-177, (1977) · Zbl 0365.12011
[2] Bröcker, L., Zur theorie der quadratischen formenüber formalreellen Körpern, Math. ann., 210, 233-256, (1974)
[3] Bröcker, L., Characterizations of fans and hereditarily Pythagorean fields, Math. Z., 152, 149-163, (1976) · Zbl 0319.12102
[4] Bröcker, L., Über die anzahl der anordnungen eines kommutativen Körpers, Arch. math., 29, 458-464, (1977) · Zbl 0368.12014
[5] Brown, R., Real places and ordered fields, Rocky mountain J. math., 1, 633-636, (1971) · Zbl 0236.12107
[6] Brown, R., An approximation theorem for extended prime spots, Canad. J. math., 24, 167-184, (1972) · Zbl 0215.36302
[7] Brown, R., Superpythagorean fields, J. algebra, 42, 483-494, (1976) · Zbl 0337.12103
[8] Brown, R., The reduced wittring of a formally real field, Trans. amer. math. soc., 230, 257-292, (1977) · Zbl 0356.12025
[9] Chossy, R.v.; Priess-Crampe, S., Ordnungsverträgliche bewertungen eines angeordneten Körpers, Arch. math., 26, 372-387, (1975) · Zbl 0323.12108
[10] Knebusch, M., On the existence of real places, Comment. math. helv., 48, 354-369, (1973) · Zbl 0278.12106
[11] Knebusch, M.; Rosenberg, A.; Ware, R., Structure of wittrings, quotients of abelian grouprings and orderings of fields, Bull. amer. math. soc., 77, 205-210, (1971) · Zbl 0213.05001
[12] Knebusch, M.; Rosenberg, A.; Ware, R., Signatures on semilocal rings, J. algebra, 26, 208-249, (1973) · Zbl 0273.13016
[13] Knebusch, M., Bewertungen mit reeller henselisierung, J. reine angew. math., 286/289, 314-321, (1976), (manuscript of Wright, M.) · Zbl 0332.12104
[14] Lorenz, F.; Leicht, J., Die primideale des wittschen ringes, Invent. math., 10, 82-88, (1970) · Zbl 0227.13015
[15] Milnor, J.; Husemöller, D., Symmetric bilinear forms, (1973), Springer-Verlag Heidelberg/New York · Zbl 0292.10016
[16] Pfister, A., Quadratische formen in beliebigen Körpern, Invent. math., 1, 116-132, (1966) · Zbl 0142.27203
[17] Prestel, A., Quadratische semiordnungen und quadratische formen, Math. Z., 133, 319-342, (1973) · Zbl 0275.12013
[18] Prestel, A., Lectures on formally real fields, Lecture notes IMPA, (1976), Rio de Janeiro · Zbl 0548.12010
[19] Tschimmel, A., Diplomthesis, (1977), Münster
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.