×

Algebraic integers whose conjugates lie near the unit circle. (English) Zbl 0396.12002


MSC:

11R04 Algebraic numbers; rings of algebraic integers
11J81 Transcendence (general theory)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] BLANKSBY (P. E.) and MONTGOMERY (H. L.) . - Algebraic integers near the unit circle , Acta Arithm., Warszawa, t. 28, 1971 , p. 355-369. Article | MR 45 #5082 | Zbl 0221.12003 · Zbl 0221.12003
[2] BOYD (D. W.) . - Small Salem numbers , Duke math. J., t. 44, 1977 , p. 315-328. Article | MR 56 #11952 | Zbl 0353.12003 · Zbl 0353.12003
[3] DOBROWOLSKI (E.) . - On the maximal modulus of conjugates of an algebraic integer , Bull. Acad. polon. Sc. (à paraître). Zbl 0393.12003 · Zbl 0393.12003
[4] KRONECKER (L.) . - Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten , J. für reine und angew. Math., t. 53, 1857 , p. 173-175. Zbl 053.1389cj · ERAM 053.1389cj
[5] LEHMER (D. H.) . - Factorization of certain cyclotomic functions , Annals of Math., Series 2, t. 34, 1933 , p. 461-479. Zbl 0007.19904 | JFM 59.0933.03 · Zbl 0007.19904
[6] MIGNOTTE (M.) and WALDSCHMIDT (M.) . - Linear forms in two logarithms and Schneider’s method , Math. Annalen, t. 231, 1978 , p. 241-267. MR 57 #242 | Zbl 0349.10029 · Zbl 0349.10029
[7] SALEM (R.) . - A remarkable class of algebraic integers . Proof of a conjecture o Vijayaraghavan, Duke math. J., t. 11, 1944 , p. 103-108. Article | MR 5,254a | Zbl 0063.06657 · Zbl 0063.06657
[8] SIEGEL (C. L.) . - Algebraic integers whose conjugates lie in the unit circle , Duke math. J., t. 11, 1944 , p. 597-602. Article | MR 6,39b | Zbl 0063.07005 · Zbl 0063.07005
[9] SMYTH (C. J.) . - On the product of the conjugates outside the unit circle of an algebraic integer , Bull. London math. Soc., t. 3, 1971 , p. 169-175. MR 44 #6641 | Zbl 0235.12003 · Zbl 0235.12003
[10] WALDSCHMIDT (M.) . - Nombres transcendants . - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 402). Zbl 0302.10030 · Zbl 0302.10030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.