Formulations de la conjecture de Leopoldt et étude d’une condition suffisante. (French) Zbl 0396.12008


11R20 Other abelian and metabelian extensions
11R42 Zeta functions and \(L\)-functions of number fields


Zbl 0382.12005
Full Text: DOI


[1] E. Artin etJ. Tate, “Class-field theory” Benjamin 1967. · Zbl 1179.11040
[2] Bertrandias, F.; Payan, J. J., “Γ-extensions et invariants cyclotomiques”, Annales Scient. Ec. Norm. Sup. 4e série t., 5, 517-517 (1972) · Zbl 0246.12005
[3] Brumer, A., “On the units of algebraic number fields”, Mathematika, 14, 121-124 (1967) · Zbl 0171.01105 · doi:10.1112/S0025579300003703
[4] J. W. S. Cassels etA. Fröhlich, “Algebraic Number Theory”. Academic Press (1967). · Zbl 0153.07403
[5] Greenberg, R., “On a certainl-Adic Representation”, Inventiones math., 21, 117-124 (1973) · Zbl 0268.12004 · doi:10.1007/BF01389691
[6] K. Iwasawa, “On ℤi-extensions of algebraic fields”. Annals of Math. Vol.98 no 2 sept. 73, 246-326. · Zbl 0285.12008
[7] L. V. Küzmin, “The Tate Module for algebraic Number Fields”. Izv. Akad. Nauk. SSR. ser Mat. Tom.36 (1972) no 2 et Math. USSR Izvestija, Vol. 6 (1972) no 2. · Zbl 0231.12013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.