Gillard, Roland Formulations de la conjecture de Leopoldt et étude d’une condition suffisante. (French) Zbl 0396.12008 Abh. Math. Semin. Univ. Hamb. 48, 125-138 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 11 Documents MSC: 11R32 Galois theory 11R52 Quaternion and other division algebras: arithmetic, zeta functions Keywords:Leopoldt Conjecture; Galois Theory; Root of Unity; Cyclic Extension Citations:Zbl 0382.12005 PDF BibTeX XML Cite \textit{R. Gillard}, Abh. Math. Semin. Univ. Hamb. 48, 125--138 (1979; Zbl 0396.12008) Full Text: DOI OpenURL References: [1] E. Artin etJ. Tate, ”Class-field theory” Benjamin 1967. · Zbl 0176.33504 [2] F. Bertrandias etJ. J. Payan, ”{\(\Gamma\)}-extensions et invariants cyclotomiques”. Annales Scient. Ec. Norm. Sup. 4e série t. 5 (1972) 517 à 543. · Zbl 0246.12005 [3] A. Brumer, ”On the units of algebraic number fields”. Mathematika14 (1967) 121–124. · Zbl 0171.01105 [4] J. W. S. Cassels etA. Fröhlich, ”Algebraic Number Theory”. Academic Press (1967). [5] R. Greenberg, ”On a certainl-Adic Representation”. Inventiones math.21 (1973) 117–124. · Zbl 0268.12004 [6] K. Iwasawa, ”On \(\mathbb{Z}\)i-extensions of algebraic fields”. Annals of Math. Vol.98 no 2 sept. 73, 246–326. · Zbl 0285.12008 [7] L. V. Küzmin, ”The Tate Module for algebraic Number Fields”. Izv. Akad. Nauk. SSR. ser Mat. Tom.36 (1972) no 2 et Math. USSR Izvestija, Vol. 6 (1972) no 2. · Zbl 0231.12013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.