Formulations de la conjecture de Leopoldt et étude d’une condition suffisante. (French) Zbl 0396.12008


11R32 Galois theory
11R52 Quaternion and other division algebras: arithmetic, zeta functions


Zbl 0382.12005
Full Text: DOI


[1] E. Artin etJ. Tate, ”Class-field theory” Benjamin 1967. · Zbl 0176.33504
[2] F. Bertrandias etJ. J. Payan, ”{\(\Gamma\)}-extensions et invariants cyclotomiques”. Annales Scient. Ec. Norm. Sup. 4e série t. 5 (1972) 517 à 543. · Zbl 0246.12005
[3] A. Brumer, ”On the units of algebraic number fields”. Mathematika14 (1967) 121–124. · Zbl 0171.01105
[4] J. W. S. Cassels etA. Fröhlich, ”Algebraic Number Theory”. Academic Press (1967).
[5] R. Greenberg, ”On a certainl-Adic Representation”. Inventiones math.21 (1973) 117–124. · Zbl 0268.12004
[6] K. Iwasawa, ”On \(\mathbb{Z}\)i-extensions of algebraic fields”. Annals of Math. Vol.98 no 2 sept. 73, 246–326. · Zbl 0285.12008
[7] L. V. Küzmin, ”The Tate Module for algebraic Number Fields”. Izv. Akad. Nauk. SSR. ser Mat. Tom.36 (1972) no 2 et Math. USSR Izvestija, Vol. 6 (1972) no 2. · Zbl 0231.12013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.