zbMATH — the first resource for mathematics

On Birch and Swinnerton-Dyer’s conjecture for elliptic curves with complex multiplication. I. (English) Zbl 0396.12011

11R42 Zeta functions and \(L\)-functions of number fields
11R11 Quadratic extensions
11R37 Class field theory
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14K22 Complex multiplication and abelian varieties
14H52 Elliptic curves
14H45 Special algebraic curves and curves of low genus
Full Text: Numdam EuDML
[1] N. Arthaud : On Birch and Swinnerton-Dyer’s conjecture for elliptic curves with complex multiplication II (in preparation). · Zbl 0396.12011 · numdam:CM_1978__37_2_209_0 · eudml:89380
[2] J. Coates : p-Adic L-functions and Iwasawa’s theory (to appear in Proceedings of Durham symposium on algebraic number theory). · Zbl 0393.12027
[3] J. Coates , A. Wiles : Kummer’s criterion for Hurwitz numbers (to appear in Proceedings of International Conference on algebraic number theory, Kyoto, Japan, 1976). · Zbl 0369.12009
[4] J. Coates , A. Wiles : On the conjecture of Birch and Swinnerton-Dyer (to appear in Inventiones Mathematicae). · Zbl 0359.14009 · doi:10.1007/BF01402975 · eudml:142468
[5] S. Lang : Algebraic Number Theory , Addison-Wesley, 1970. · Zbl 0211.38404
[6] G. Robert : Unités elliptiques . Bull. Soc. Math. France, Mémoire 36, 1973. · Zbl 0314.12006 · numdam:MSMF_1973__36__5_0 · eudml:94657
[7] G. Shimura : Introduction to the arithmetic theory of automorphic functions . Pub. Math. Soc. Japan, 11, 1971. · Zbl 0221.10029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.