Everitt, W. N. A note on an integral inequality. (English) Zbl 0396.26005 Quaest. Math. 2, 461-478 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 2 Documents MSC: 26D10 Inequalities involving derivatives and differential and integral operators 34L99 Ordinary differential operators 47E05 General theory of ordinary differential operators Keywords:Integral Inequality; Self-Adjoint; Continuous Function; Locally Absolutely; Ordinary Differential Operators; Spectral Analysis Citations:Zbl 0307.26015; Zbl 0388.26007 PDF BibTeX XML Cite \textit{W. N. Everitt}, Quaest. Math. 2, 461--478 (1978; Zbl 0396.26005) Full Text: DOI OpenURL References: [1] Evans W. D., ”Norm inequalities involving derivatives” · Zbl 0409.26008 [2] Everitt W. N., Proc. Royal Soc. Edinburgh (A) 69 pp 295– (1971) [3] DOI: 10.1007/BFb0067085 [4] Everitt W. N., Proceedings of the International Conference on Differential Equations, Los Angeles pp 287– (1975) [5] Everitt W. N., ”On a class of integral inequalities” · Zbl 0388.26007 [6] Hardy G. H., Inequalities (1934) · Zbl 0010.10703 [7] Hellwig G., Differential operators of mathematical physics (1967) · Zbl 0163.11801 [8] Kamke E., Differentialgleichungen: Lösungsmethoden und Lösungen (1948) [9] Mitrinovié D. S., Analytic inequalities (1970) · Zbl 0199.38101 [10] Naimark M. A., Linear differential operators: II (1968) · Zbl 0227.34020 [11] Watson G. N., A treatise on the theory of Bessel functions (1944) · Zbl 0063.08184 [12] Weyl H., Gruppentheorie und Quantummechanik (1931) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.