Ginibre, J.; Velo, G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. (English) Zbl 0396.35028 J. Funct. Anal. 32, 1-32 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 300 Documents MSC: 35J10 Schrödinger operator, Schrödinger equation 35J60 Nonlinear elliptic equations 35D05 Existence of generalized solutions of PDE (MSC2000) 35A05 General existence and uniqueness theorems (PDE) (MSC2000) Keywords:Cauchy Problem; Nonlinear Schrödinger Equations; Global Solutions; Initial Value Problem; Sobolev Space PDF BibTeX XML Cite \textit{J. Ginibre} and \textit{G. Velo}, J. Funct. Anal. 32, 1--32 (1979; Zbl 0396.35028) Full Text: DOI OpenURL References: [1] Dunford, N.; Schwartz, J., () [2] de Gennes, P.G., Superconductivity of metals and alloys, (1966), Benjamin New York, Chap. 6 · Zbl 0138.22801 [3] Hille, E.; Phillips, R.S., Functional analysis and semi-groups, (1957), American Mathematical Society Providence R.I [4] Scott, A.C.; Chu, F.Y.F.; McLaughlin, D.W., The soliton: A new concept in applied science, (), 1143-1483 [5] Strauss, W.A., Nonlinear scattering theory, (), 53-78 · Zbl 0297.35062 [6] Volevic, L.R.; Paneyakh, B.P., Certain spaces of generalized functions and embedding theorems, Russian math. surveys, 20, 1-73, (1965) [7] Zakharov, V.E.; Shabat, A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. physics JETP, 34, 62-69, (1972) [8] Baillon, J.B.; Cazenave, T.; Figueira, M., C. R. acad. sci. Paris, 284, 869-872, (1977) [9] Glassey, R.T., On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. math. phys., 18, 1794-1797, (1977) · Zbl 0372.35009 [10] {\scJ. E. Lin and W. Strauss}, Decay and scattering of solutions of a non-linear Schrödinger equation, to appear. [11] Lions, J.L.; Magenes, E., () This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.