×

Numerical calculations of two-cell and single-cell Taylor flows. (English) Zbl 0599.76039

Numerical solutions of the Navier-Stokes equations for steady axisymmetric flow in the Taylor experiment are presented. In the cases considered the annulus is so short that only one or two Taylor cells are present. The results are compared with a recent theoretical and experimental study by T. B. Benjamin and T. Mullin [Proc. R. Soc. Lond., Ser. A 377, 221-249 (1981)]. The qualitative picture of the flows possible proposed by Benjamin and Mullin is confirmed by the calculations, and the quantitative agreement with their experimental results is quite satisfactory.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics

Software:

MA32
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Mullin, J. Fluid Mech. 121 pp 207– (1982)
[2] DOI: 10.1137/0717048 · Zbl 0454.65042
[3] Moore, Numer. Funct. Anal. and Optimiz. 2 pp 441– (1980)
[4] DOI: 10.1007/BF01395805 · Zbl 0525.65037
[5] DOI: 10.1007/BF01396184 · Zbl 0525.65036
[6] DOI: 10.1007/BF01395985 · Zbl 0488.65021
[7] Benjamin, J. Fluid Mech. 12 pp 219– (1982)
[8] Benjamin, Proc. R. Soc. Lond 377 pp 221– (1981)
[9] Benjamin, Proc. R. Soc. Lond. 359 pp 27– (1978)
[10] Benjamin, Proc. R. Soc. Lond. 359 pp 1– (1978)
[11] Benjamin, Math. Proc. Camb. Phil. Soc. 79 pp 373– (1976)
[12] Foias, Commun. Pure Appl. Maths 30 pp 149– (1977)
[13] DOI: 10.1002/fld.1650020103 · Zbl 0483.76013
[14] Duff, Harwell Rep. 38 pp 1– (1981)
[15] Cliffe, Harwell Rep. 38 pp 1– (1982)
[16] Werner, SIAM J. Numer. Anal. 3 pp 1– (1983)
[17] DOI: 10.1007/BF00284160
[18] Schaeffer, Math. Proc. Camb. Phil. Soc. 87 pp 307– (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.