×

zbMATH — the first resource for mathematics

A hierarchy of independent \(\omega\)-processions of cosimple isols. (English. Russian original) Zbl 0397.03028
Algebra Logic 17, 40-58 (1978); translation from Algebra Logika 17, 56-78 (1978).
MSC:
03D50 Recursive equivalence types of sets and structures, isols
03D25 Recursively (computably) enumerable sets and degrees
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] E. Ellentuck, ”On the degrees of universal regressive isols,” Math. Scand.,32, No. 2, 145–164 (1973). · Zbl 0275.02040
[2] E. Ellentuck, ”Decomposable isols and their degrees,” Z. Math. Log. Grundl. Math.,22, No. 3, 251–260 (1976). · Zbl 0344.02034
[3] E. Ellentuck, ”On the form of functions which preserve regressive isols,” Compos. Math.,26, No. 3, 283–302 (1973). · Zbl 0272.02067
[4] E. Ellentuck, ”Universal cosimple isols,” Pac. J. Math.,42, No. 3, 629–638 (1972). · Zbl 0254.02032
[5] A. Nerode, ”Extensions to isols,” Ann. Math.,73, No. 2, 362–403 (1961). · Zbl 0101.01203
[6] J. C. E. Dekker, ”The minimum of two regressive isols,” Math. Zeit.,83, No. 4, 345–366 (1964). · Zbl 0122.01002
[7] J. Barback, ”A note on regressive isols,” Notre Dame J. Form. Logic,7, No. 2, 203–205 (1966). · Zbl 0207.30803
[8] V. L. Mikheev, ”Sparse and universal regressive isols,” Sib. Mat. Zh.,18, No. 2, 360–369 (1977). · Zbl 0411.03038
[9] W. Richter, ”Regressive sets of ordern,” Math. Zeit.,86, No. 5, 372–374 (1965). · Zbl 0207.30801
[10] J. Barback, ”Regressive upper bounds,” Seminar Math.,39, 248–272 (1967). · Zbl 0159.01002
[11] J. Barback, ”Two notes on regressive isols,” Pac. J. Math.,16, No. 3, 407–420 (1966). · Zbl 0199.02503
[12] J. C. E. Dekker and J. Myhill, ”Recursive equivalence types,” Univ. Calif. Publ. Math.,3, No. 3, 67–213 (1960). · Zbl 0249.02021
[13] H. Rogers, Theory of Recursive Functions and Effective Computability McGraw-Hill (1967). · Zbl 0183.01401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.