×

The \(L^p\)-boundedness of pseudo-differential operators with non-regular symbols. (English) Zbl 0397.35071


MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
35A35 Theoretical approximation in context of PDEs
47Gxx Integral, integro-differential, and pseudodifferential operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Calderón V. P., Proc. Nat. Acad. Sci. USA. 69 pp 1185– · Zbl 0244.35074
[2] Ching Chin-Hung, J. Differential Equations 11 pp 436– (1972) · Zbl 0248.35106
[3] Cordes H. 0., J. Functional Analysis 18 pp 115– (1975) · Zbl 0306.47024
[4] Hörmander L., Acta Math. 104 pp 93– (1960) · Zbl 0093.11402
[5] hörmander L., Symposium on Singular Integrals, Amer. Math. SOC. 10 pp 138–
[6] Hörmander L., Comm. Pure Appl. Math. 24 pp 529– (1971) · Zbl 0206.39303
[7] Kagan V. M., Učebn. Zaved. Matematika 73 (6) pp 33– (1968)
[8] Kato T., Osaka J. Math. 13 pp 1– (1976)
[9] Kumano-go H., Comm. Pure Appl. Math. 23 pp 115– (1970) · Zbl 0186.16405
[10] Kumano-go H., J. Fac. Sci. Univ. Tokyo 17 pp 31– (1970)
[11] Kumano-go H., Proc. Japan Acad., 46 pp 138– (1970) · Zbl 0206.10404
[12] Kumano-go H., to appear 46 (1970)
[13] Zygmund A., 2, in: Trigonometrical (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.