zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Functional equations in dynamic programming. (English) Zbl 0397.39016

39B99Functional equations
90C39Dynamic programming
49J05Free problems in one independent variable (existence)
62M99Inference from stochastic processes
Full Text: DOI EuDML
[1] Bellman, R.,Dynamic programming. Princeton University Press, Princeton, N.J., 1957. · Zbl 0077.13605
[2] Bellman, R.,Adaptive control processes. A guided tour. Princeton University Press, Princeton, N.J., 1961. · Zbl 0103.12901
[3] Bellman, R. andDreyfus, S.,Applied dynamic programming. Princeton University Press, Princeton, N.J., 1962.
[4] Arrow, K. J., Karlin, S. andScarf, H.,Studies in the mathematical theory of inventory and production. Stanford University Press, Stanford, 1958. · Zbl 0079.36003
[5] Mine, H. andOsaki, S.,Markovian decision-processes. American Elsevier, New York, 1970. · Zbl 0209.51601
[6] Howard, R. A.,Dynamic programming and Markov processes. Wiley, 1960. · Zbl 0091.16001
[7] Bellman, R.,Introduction to the mathematical theory of control processes, Volumes I and II, 1967, 1971. Academic Press, New York. · Zbl 0164.39601
[8] Dreyfus, S.,Dynamic programming and the calculus of variations. Academic Press, New York, 1965. · Zbl 0193.19401
[9] Aris, R.,Discrete dynamic programming. Blaisdell, New York, 1964. · Zbl 0122.37503
[10] Bellman, R. andAngel, E.,Dynamic programming and partial differential equations. Academic Press, New York, 1972. · Zbl 0312.49011
[11] Lee, E. S.,Quasilinearization and invariant imbedding. Academic Press, New York, 1968. · Zbl 0212.17602
[12] Bellman, R. andWing, G. M.,An introduction to invariant imbedding. Wiley, New York, 1975. · Zbl 0325.34001
[13] Wing, G. M.,An introduction to transport theory. Wiley, New York, 1962. · Zbl 0102.43004
[14] Bellman, R. andZadeh, L. A.,Decision-making in a fuzzy environment, Management Sciences 17, (1970), B-141--B164. · Zbl 0224.90032 · doi:10.1287/mnsc.17.4.B141
[15] Bellman, R.,A note on cluster analysis and dynamic programming. Mathematical Biosciences 19 (1973), 311--312. · Zbl 0277.49010 · doi:10.1016/0025-5564(73)90007-2
[16] Chang, S. S. L.,Fuzzy dynamic programming and decision-making process. InProceedings of the 3rd Princeton Conference on Information Sciences, 1969, pp. 200--203.
[17] Zadeh, L. A.,Fuzzy sets. Information and Control,8 (1965), 338--353. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[18] Zadeh, L. A.,Fuzzy algorithms. Information and Control12 (1968), 94--102. · Zbl 0182.33301 · doi:10.1016/S0019-9958(68)90211-8